Skip to main content
Log in

Isolation and growth of the phototrophic bacterium Rhodopseudomonas palustris strain B1 in sago-starch-processing wastewater

  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

An indigenous strain of the purple non-sulphur phototrophic bacterium, Rhodopseudomonas palustris strain B1, was selected for the utilization and treatment of wastewater from a sago-starch-processing decanter. Growth of Strain B1 under anaerobic–light conditions in the carbohydrate-rich effluent was optimized by using 50% (v/v) effluent diluted in a basal minimal mineral medium with the addition to 0.1% (w/v) yeast extract. The optimum level of nitrogen source supplement, ammonium sulphate, was 1.0g/l. Highest cell mass concentration was achieved by using tungsten lamps as the light source with a light intensity of 4 klux. Under these optimal conditions, a maximum biomass of about 2.5g dry cell/l with a pigment content of about 1.1mg carotenoid/g dry weight cell was achieved after 96h of anaerobic cultivation. There was a 77% reduc n the chemical oxygen demand (COD) of the effluent. A cell yield of about 0.59g dry weight cell/g COD was obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akiba, T., Usmani, R. & Horikoshi, K. 1983 Rhodopseudomonas rutila, a new species of nonsulphur purple photosynthetic bacteria. International Journal of Systematic Bacteriology 33, 551–556.

    Google Scholar 

  • Alang, Z.C. Azuddin, N., Zulpilip, T. & Hassan, A.H. 1993 Sago palm-from the jungle to plantations through biotechnology. Australasian Biotechnology 3, 227–232.

    Google Scholar 

  • APHA, AWWA & WPCF 1989 Standard Methods for the Examination of Water and Wastewater, 17th edn, eds Clesceri, L.S., Greenberg, A.E. & Trussell, R.R. Baltimore, Maryland: Port City Press.

    Google Scholar 

  • Chew, T.Y. & Shim, Y.L. 1993 Management of sago processing wastes. In Waste Management in Malaysia: Current Status and Prospects for Bioremediation. A Monograph prepared by the Environmental Biotechnology Research Group of the National Working Group on Biotechnology, ed Yeoh, B.G. pp. 159–167. Kuala Lumpur, Malaysia: Ministry of Science, Technology and the Environment.

    Google Scholar 

  • Demchick, R.S. Turner, F.R. & Gest, H. 1990 Rhodopseudomonas cryptolactis, sp. nov., a new thermotolerant species of budding phototrophic purple bacteria. FEMS Microbiology Letters 71, 117–122.

    Google Scholar 

  • Dow, C.S. 1982 Experiments with photosynthetic bacteria. In Sourcebook of Experiments for the Teaching of Microbiology, eds Primrose, S.B. & Wardlaw, A.C. pp. 408–422. New York: Academic Press.

    Google Scholar 

  • Earle, J.F.K., Koopman, B. & Lincoln, E.P. 1984 Role of purple sulfur bacteria in swine waste reclamation. Agricultural Wastes 10, 297–312.

    Google Scholar 

  • Firsow, N.N. & Drews, G. 1977 Differentiation of the intracytoplasmic membrane of Rhodopseudomonas palustris induced by variations of oxygen partial pressure or light intensity. Archives of Microbiology 115, 299–306.

    Google Scholar 

  • Fujii, T., Watanabe, T., Ohmura, N., Okuyama, K. Ishida, K., Shinoyama, H. & Hiraishi, A. 1993 Use of levulinic acid by Rhodopseudomonas sp. No. 7 for phototrophic growth and enhanced hydrogen evolution. Bioscience, Biotechnology and Biochemistry 57, 720–723

    Google Scholar 

  • Getha, K. 1995 Growth and production of the phototrophic bacterium Rhodopseudomonas palustris strain B1 in sago starch processing wastewater. MPhil thesis. University of Malaya, Kuala Lumpur, Malaysia.

    Google Scholar 

  • Herbert, D., Phipps, P.J. & Strange, R.E. 1971 In Methods in Microbiology, vol. 5B, eds Norris, J.R. & Ribbons, D.W. pp. 265–273. New York: Academic Press.

    Google Scholar 

  • Hiraishi, A., Santos, T.S. Sugiyama, J. & Komagata, K. 1992 Rhodopseudomonas rutila is a later subjective synonym of Rhodopseudomonas palustris. International Journal of Systematic Bacteriology 42, 186–188.

    Google Scholar 

  • Hirotani, H., Ohigashi, H., Kobayashi, M., Koshimizu, K. & Takahashi, E. 1991 Inactivation of T5 phage by cis-vaccenic acid, an antivirus substance from Rhodopseudomonas capsulata, and by unsaturated fatty acids and related alcohols. FEMS Microbiology Letters 77, 13–18.

    Google Scholar 

  • Imhoff, J.F. 1982 Response of photosynthetic bacteria to mineral nutrients. In CRC Handbook of Biosolar Resources, vol. 1, eds Mitsui, A. & Black, C.C. pp. 135–146. Boca Raton, Florida: CRC Press.

    Google Scholar 

  • Imhoff, J.F. & Truper, H.G. 1976 Marine sponges as habitats of anaerobic phototrophic bacteria. Microbial Ecology 3, 1–9.

    Google Scholar 

  • Kim, J.S., Ito, K. & Takahashi, H. 1982 Production of molecular hydrogen in outdoor batch cultures of Rhodopseudomonas sphaeroides. Agricultural and Biological Chemistry 46, 937–941.

    Google Scholar 

  • Kobayashi, M. 1982 The role of phototrophic bacteria in nature and their utilization. In Advances in Agricultural Microbiology, ed Rao, N.S.S. pp. 643–661. London: Butterworth Scientific.

    Google Scholar 

  • Kobayashi, M. & Tchan, Y.T. 1973 Treatment of industrial waste solutions and production of useful by-products using a photosynthetic bacterial method. Water Research 7, 1219–1224.

    Google Scholar 

  • Mangels, L.A., Favinger, J.L., Madigan, M.T. & Gest, H. 1986 Isolation and characterisation of the N2-fixing marine photosynthetic bacterium Rhodopseudomonas marina, variety agilis. FEMS Microbiology Letters 36, 99–104.

    Google Scholar 

  • Miyake, J., Tomizuka, N. & Kamibayashi, A. 1982 Prolonged photo-hydrogen production by Rhodospirillum rubrum. Journal of Fermentation Technology 60, 199–203.

    Google Scholar 

  • Noparatnaraporn, N. & Nagai, S. 1986 Selection of Rhodopseudomonas sphaeroides P47 as a useful source of single cell protein. Journal of General and Applied Microbiology 32, 351–359.

    Google Scholar 

  • Noparatnaraporn, N., Nishizawa, Y., Hayashi, M. & Nagai, S. 1983 Single cell protein production from cassava starch by Rhodopseudomonas gelatinosa. Journal of Fermentation Technology 61, 515–519.

    Google Scholar 

  • Noparatnaraporn, N., Wongkornchawalit, W., Kantachote, D. & Nagai, S. 1986 SCP production of Rhodopseudomonas sphaeroides on pineapple wastes. Journal of Fermentation Technology 64, 132–143.

    Google Scholar 

  • Pfennig, N. 1974 Rhodopseudomonas globiformis, sp. n., a new species of the Rhodospirillacease. Archives of Microbiology 100, 197–206.

    Google Scholar 

  • Prasertsan, P., Choorit, W. & Suwanno, S. 1993 Optimization for growth of Rhodocyclus gelatinosus in seafood processing effluents. World Journal of Microbiology and Biotechnology 9, 593–596.

    Google Scholar 

  • Santos, T.S., Hiraishi, A., Sugiyama, J. & Komagata, K. 1989 Identification of nitrogen-fixing, pink-pigmented bacteria previously referred to as Protomonas-like bacteria. Annual Report of IC Biotechnology 12, 221–230.

    Google Scholar 

  • Sasaki, K., Noparatnaraporn, N., Hayashi, M., Nishizawa, Y. & Nagai, S. 1981 Single-cell protein production by treatment of soybean wastes with Rhodopseudomonas gelatinosa. Journal of Fermentation Technology 59, 471–477.

    Google Scholar 

  • Sasaki, K., Ikeda, S., Nishizawa, Y. & Hayashi, M. 1987 Production of 5 aminolevulinic acid by photosynthetic bacteria. Journal of Fermentation Technology 65, 511–515.

    Google Scholar 

  • Sasaki, K., Noparatnaraporn, N. & Nagai, S. 1991 Use of photosynthetic bacteria for the production of SCP and chemicals from agroindustrial wastes. In Bioconversion of Waste Materials to Industrial Products, ed Martin, A.M. pp. 225–264. London: Elsevier Applied Science.

    Google Scholar 

  • Sawada, H. & Rodgers, P.L. 1977 Photosynthetic bacteria in waste treatment–pure culture studies with Rhodopseudomonas capsulata. Journal of Fermentation Technology 55, 297–310.

    Google Scholar 

  • Shim, Y.L. 1992 Utilization of sago hampas by microfungi. MBiotech thesis. University of Malaya, Kuala Lumpur, Malaysia.

    Google Scholar 

  • Sojka, G.A. Freeze, H.H. & Gest, H. 1970 Quantitative estimation of bacteriochlorophyll in situ. Archives of Biochemistry and Biophysics 136, 578–580.

    Google Scholar 

  • Truper, H.G. & Imhoff, J.F. 1991 The genera Rhodocyclus and Rubrivivax. In The Prokaryotes, vol. IV, 2nd edn, eds Balows, A. et al. pp. 2556–2561. New York: Springer-Verlag.

    Google Scholar 

  • Vikineswary, S., Shim, Y.L., Thambirajah, J.J. & Blakebrough, N. 1994 Possible microbial utilization of sago processing wastes. Resources, Conservation and Recycling 11, 289–296.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Getha, K., Vikineswary, S. & Chong, V. Isolation and growth of the phototrophic bacterium Rhodopseudomonas palustris strain B1 in sago-starch-processing wastewater. World Journal of Microbiology and Biotechnology 14, 505–511 (1998). https://doi.org/10.1023/A:1008855125634

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008855125634

Navigation