Skip to main content
Log in

On the heterogeneous structure of thermally cured bis-GMA/TEGDMA resins

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

In this paper we report on the morphogenesis of dental resins formed by a thermally initiated radical cross-linking copolymerization of model dental resins. These systems were considered reasonable model simplifications of the actual resins used in commercial filling composites, veneers, etc. Effect of bis-GMA content varying from 0 to 100% on the degree of conversion and morphology of the cured resin was investigated. Dynamic scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), dynamic mechanical thermal analysis (DMTA) and high temperature solvent extraction experiments were performed in order to determine the nature and location of unreacted unsaturations in relation to bis-GMA concentration. The interval of cure temperatures, ranging from 23 to 250°C, may seem irrelevant from the clinical point of view but is instrumental for an understanding of the processes involved. Single glass transition temperature (Tg) found in DMTA experiments showed that the copolymerization process between bis-GMA and TEGDMA is random in nature, however, the overall cure reaction is inhomogeneous and this inhomogeneity is increasing with increasing bis-GMA molar fraction. Heterogeneous character of the cure was reflected into the network morphogenesis characterized by microgellation preceded by cyclization and, following connection of microgels. These cure kinetics resulted in a heterogeneous morphology of the cured resin. Moreover, it was shown that the cure kinetics controls to a great extent the degree of conversion of the reactive vinylidene C=C bonds in a fully cured resin. A decrease in bis-GMA concentration in the resin mixture led to a higher degree of conversion, however, even a neat TEGDMA homopolymer did not exhibit C=C conversion greater than 65–70% under the cure conditions used. Leaching out tests, consisting of an extraction of unreacted monomer from a finely ground cured resin in boiling cyclohexanone at 160°C over a period of 5 d, revealed total weight loss of the order of 3.2–5.6 wt % regardless of the total conversion. No uncured monomer was detected in the extract solution using FTIR spectroscopy, however, the method used is not sensitive to the presence of oligomers. It was concluded that the remaining unreacted double bonds are the inevitable result of the diffusion controled heterogeneous cure reaction. The low rate of diffusion in the resin beyond its gel point is controlled by high monomer rigidity, low mobility and radius of gyration of the monomers. The unreacted C=C bonds exist in the form of pendant, side groups chemically attached to the network. In addition, a hypothesis has been proposed that for concentrations of rigid bis-GMA monomers above 50 wt %, preferably only one methacrylate group of its molecule has reacted on the time span of the experiment performed and has been incorporated in the cured network. Hence, a substantial part of unsaturation exists in the solid polymer in the form of pendant groups formed by mechanically ineffective bis-GMA monomers. The results are in good qualitative agreement with computer simulations based on the kinetic gelation model. © 2000 Kluwer Academic Publishers

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. E. RUYTER, in Proceedings of the International Symposium on Posterior Composite Resin Dental Materials, edited by G. Vanherle and D.C. Smith, (Peter Szulc Publishing Co., Utrecht, 1985) p. 109.

    Google Scholar 

  2. Y. SAIMI, K. ISHIHARA and N. NAKABAYASHI, Polym. J. 24 (1992) 357.

    Google Scholar 

  3. P. BURTSCHER, Dent. Mater. 9 (1993) 218.

    Google Scholar 

  4. G. P. SIMON, P. E. M. ALLEN, D. J. BENNETT, D. R. G. WILLIAMS and E. H. WILLIAMS, Macromolecules 22 (1989) 3555.

    Google Scholar 

  5. A. PEUTZFELDT, J. Dent. Res. 73 (1994) 511.

    Google Scholar 

  6. K. DUSEK, Coll. Czech. Chem. Commun. 58 (1993) 2245.

    Google Scholar 

  7. G. P. SIMON, P. E. M. ALLEN and D. R. G. WILLIAMS, Polymer 32 (1991) 2577.

    Google Scholar 

  8. S. LOSHAEK and T. C. FOX, J. Am. Chem. Soc. 75 (1953) 3544.

    Google Scholar 

  9. G. F. COWPERTHWAITE, J. J. FOY and M. A. MALLOY, in “Biomedical and Dental Applications of Polymers”, edited by C. C. Gebelein and P. P. Koblitz (Plenum Press, New York, 1981) p. 379.

    Google Scholar 

  10. J. M. ANTONUCCI and E. E. TOTH, J. Dent. Res. 60 (1981) 369, Abstract 234.

    Google Scholar 

  11. J. L. FERRACANE and F. H. GREENER, ibid 63 (1984) 1093.

    Google Scholar 

  12. A. BAN and J. HASEGAWA, ibid 3 (1984) 85.

    Google Scholar 

  13. W. WANG and A. T. DIBENEDETTO, unpublished results.

  14. P. LAMBRECHTS, “Basic properties of dental composites and their impact on clinical performance”, (Katholik Universita Leuven, Leuven, 1983).

    Google Scholar 

  15. M. KUCERA, “Mechanisms and Kinetics of radical polymerizations”, (Academia, Prague, 1990).

    Google Scholar 

  16. L. LAPCIK, J. JANCAR and A. STASKO, J. Mater. Sci.: Mater. Med. 9 (1998) 257.

    Google Scholar 

  17. H. M. J. BOOTS and N. A. DOTSON, Polym. Commun. 29 (1988) 346.

    Google Scholar 

  18. A. B. KINNEY and A. B. SCRANTON, in “Superabsorbent Polymers Science and Technology”, edited by F. L. Buchholz and N. A. Peppas, ACS Symposium Series 573 (1994) p.2.

  19. W. O. COOK, in “Proceedings of the International Symposium on Posterior Composite Resin Dental Materials”, edited by G. Vanherle and D.C. Smith, (Peter Szulc Publishing Co., Utrecht, 1985) p. 273.

    Google Scholar 

  20. G. C. ELIADES, G. J. VOUGIOUKLAKIS and A. A CAPUTO, Dent. Mater. 3 (1987) 19.

    Google Scholar 

  21. W. WU and B. M. FRANCONI, Polym. Eng. Sci. 23 (1983) 704.

    Google Scholar 

  22. S. M. CONNELLY, PhD Thesis, University of Connecticut, (1993).

  23. J. SHIEH and T. J. HSU, Polym. Eng. Sci. 32 (1992) 335.

    Google Scholar 

  24. K. F. LEINFELDER and J. E. LEMONS, “Clinical Restorative Materials and Techniques”, (Lea and Febiger, Philadelphia, 1988).

    Google Scholar 

  25. H. GALINA, K. DUSEK, Z. TUZAR, M. BOHDANECKY and J. STOKR, Eur. Polym. J. 16 (1980) 1043.

    Google Scholar 

  26. A. A. BERLIN and N. G. MATVEJEVA, Polym. Sci.-Macromol. Rev. 15 (1980) 107.

    Google Scholar 

  27. N. N. TVORGOV, Polym. Sci. USSR 18 (1976) 2192.

    Google Scholar 

  28. P. H. JACOBSEN and J. A. VON FRAUNHOFER, J. Dent. Res. 53 (1974) 461.

    Google Scholar 

  29. P. E. M. ALLEN, G. P. SIMON, D. R. G. WILLIAMS and E. H. WILLIAMS, Eur. Polym. J. 22 (1986) 549.

    Google Scholar 

  30. J. G. KLOOSTERBOER, G. M. M. VAN DE HEI and H. M. J. BOOTS, Polym. Commun. 25 (1984) 354.

    Google Scholar 

  31. H. M. J. BOOTS and R. B. PANDEY, Polym. Bull. 11 (1984) 415.

    Google Scholar 

  32. K. DUSEK, Coll. Czech. Chem. Commun. 58 (1993) 2245.

    Google Scholar 

  33. J. E. ROSENBERG and P. FLODIN, Macromolecules 20 (1987) 1518.

    Google Scholar 

  34. H. KLOOSTERBOER, Adv. Polym. Sci. 84 (1988) 1.

    Google Scholar 

  35. P. E. M. ALLEN, G. P. SIMON, D. R. G. WILLIAMS and E. H. WILLIAMS, Eur. Polym. J. 22 (1986) 549.

    Google Scholar 

  36. G. P. SIMON, P. E. M. ALLEN and D. R. G. WILLIAMS, Polymer 32 (1991) 2577.

    Google Scholar 

  37. V. P. ROSCHUPKIN, B. OZERKOVSKII, B. YU. KALMYKOV and G. V. KOROLEV, Vysokomol. Soed. Ser. A. 19 (1977) 669.

    Google Scholar 

  38. F. W. BILLMAYER, “Textbook of Polymer Science·3rd Edn”, (J. Wiley, New York, 1984) p. 72.

    Google Scholar 

  39. L. H. SPERLING, “Introduction to Polymer Physics·2nd Edn”, (J. Wiley, New York, 1993).

    Google Scholar 

  40. G. V. KOROLEV, L. MAKHONINA and A. A. BERLIN, Vysokomol Soed. Ser. A 3 (1961) 198.

    Google Scholar 

  41. R. PRIYAWAN, K. WAKASA, K. A. CHOWDHURY and M. YAMAKI, J. Mater. Sci.: Mater. Med. 6 (1995) 1.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jancar, J., Wang, W. & Dibenedetto, A.T. On the heterogeneous structure of thermally cured bis-GMA/TEGDMA resins. Journal of Materials Science: Materials in Medicine 11, 675–682 (2000). https://doi.org/10.1023/A:1008999023271

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008999023271

Keywords

Navigation