Skip to main content
Log in

Competition and coexistence of rhizomatous perennial plants along a nutrient gradient

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

I studied competition and coexistence of three tall clonal perennial plant species, Calamagrostis epigejos (L.) Roth, Solidago canadensis L., and Tanacetum vulgare L. along a gradient of soil productivity over five years. A replacement series field experiment was conducted with high, moderate and low fertility levels in 1m×1m plots. There were significant effects of soil type on ramet density (P<0.001), mean height (P<0.01), and total biomass (P<0.01). Ramet density, mean height, and total biomass increased with increasing soil fertility. There were also significant effects of mixture on ramet density (P<0.01), but not on mean height and total biomass for all species. Significant neighbor effects on ramet density and total biomass (P<0.01) were found for Solidago, showing that it is important whether Tanacetum or Calamagrostis is its neighbor within mixtures. During the five years there was only one case of competitive exclusion: Calamagrostis excluded Solidago on the most fertile substrate in the fifth growing season. In most cases species coexisted over the five years. Each of the three species was able to dominate in at least one combination of substrate type and mixture. The experiment showed that asymmetric competition for light on substrates of high fertility, symmetric competition for nutrients on nutrient-poor soil and positive interactions especially on substrates of intermediate fertility played a role. A founder effect was evident in aggregated mixtures of Calamagrostis and Solidago on the nutrient-rich substrate. A conceptual model of the relative importance of root competition for soil nutrients, shoot competition for light, and positive interactions along the fertility gradient is presented. The model emphasizes that positive interactions play an important role over a broad range of the productivity scale with a peak at intermediate levels of fertility. On the substrate of high productivity shoot competition for light is more important than positive interactions and root competition for soil nutrients as well. The competitive superiority of Calamagrostis on the most productive substrate was evident only in the long run. Rare events like extreme summer drought or selective herbivore pressure caused a switch in dominance in mixtures with Solidago, respectively Tanacetum. The guerrilla growth strategy of Calamagrostis and interference competition through a dense cover of aboveground biomass and litter could further cause competitive exclusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aarssen, L. W. 1983. Ecological combining ability and competitive combining ability in plants: towards a general evolutionary theory of coexistence in systems of competition. Am. Nat. 122: 707–731.

    Google Scholar 

  • Aarssen, L. W. 1988. 'Pecking order' of four plant species from pastures of different ages. Oikos 51: 3–12.

    Google Scholar 

  • Aiken, S. G., Lefkovitch, L. P. & Armstrong, K. C. 1989. Calamagrostis epigejos (Poaceae) in North America, especially Ontario. Can. J. Bot. 67: 3205–3218.

    Google Scholar 

  • Belcher, J. W., Keddy, P. A. & Twolan-Strutt, L. 1995. Root and shoot competition intensity along a soil depth gradient. J. Ecol. 83: 673–682.

    Google Scholar 

  • Bergh, J. P. van den 1968. An analysis of grasses in mixed and pure stands. Agric. Res. Report 174: 1–71.

    Google Scholar 

  • Bertness, M. D. & Callaway, R. 1994. Positive interactions in communities. TREE 9: 191–193.

    Google Scholar 

  • Bertness, M. D. & Leonard, G. H. 1997. The role of positive interactions in communities: lessons from intertidal habitats. Ecology 78: 1976–1989.

    Google Scholar 

  • Bonser, S. P. & Reader, R. J. 1995. Plant competition and herbivory in relation to vegetation biomass. Ecology 76: 2176–2183.

    Google Scholar 

  • Braakhekke, W. G. 1980. On coexistence: a causal approach to diversity stability in grassland vegetation. Agricultural Research Report 902. Wageningen, The Netherlands.

    Google Scholar 

  • Braakhekke, W. G. 1985. The significance of competition for plant diversity. Z. Zool. Syst. Evolutionsforsch. 23: 315–327.

    Google Scholar 

  • Brooker, R. W. & Callaghan, T. V. 1998. The balance between positive and negative plant interactions and its relationship to environmental gradients: a model. Oikos 81: 196–207.

    Google Scholar 

  • Cajander, A. K. 1925. Der gegenseitige Kampf in der Pflanzenwelt. Veröff. Geobot. Inst. Rübel 3: 665–675.

    Google Scholar 

  • Callaway, R.M. 1995. Positive interactions among plants. Bot. Rev. 61: 306–349.

    Google Scholar 

  • Callaway, R. M. 1997. Positive interactions in plant communities and the individualistic-continuum concept. Oecologia 112: 143–149.

    Google Scholar 

  • Callaway, R.M. 1998. Are positive interactions species-specific? Oikos 82: 202–207.

    Google Scholar 

  • Callaway, R. M. & King, L. 1996. Temperature-driven variation in substrate oxygenation and the balance of competition and facilitation. Ecology 77: 1189–1195.

    Google Scholar 

  • Callaway, R. M. & Walker, L. W. 1997. Competition and facilitation: a synthetic approach to interactions in plant communities. Ecology 78: 1958–1965.

    Google Scholar 

  • Campbell, B. D. & Grime, J. P. 1992. An experimental test of plant strategy theory. Ecology 1992: 15–29.

    Google Scholar 

  • Connell, J. H. 1983. On the prevalence and relative importance of interspecific competition: Evidence from field experiments. Am. Nat. 122: 661–696.

    Google Scholar 

  • Connell, J. H. 1990. Apparent versus "real" competition in plants. Pp. 9–26. In: Grace, J.B. & Tilman, D. (eds), Perspectives on plant competition. Academic Press, San Diego, USA.

    Google Scholar 

  • Cornelius, R., Faensen-Thiebes, A., Marschner, B. & Weigmann, G. 1997. 'Ballungsraumnahe Waldökosysteme' Berlin: Ergebnisse aus dem Forschungsvorhaben. Pp. 1–36. In: Handbuch der Umweltwissenschaften, chapter V-4.9. Ecomed Verlag, Landsberg/ Lech, Germany.

    Google Scholar 

  • Cottam, D.A. 1985. Frequency-dependent grazing by slugs and grasshoppers. J. Ecol. 73: 925–933.

    Google Scholar 

  • Crawley, M. J. 1983. Herbivory: the dynamics of animal-plant interactions. University of California Press, Berkeley, California, USA.

    Google Scholar 

  • Darwin, C. 1859. The origin of species by means of natural selection. 1st edition. John Murray, London, UK.

    Google Scholar 

  • Ellenberg, H. (transl. by G.K. Strutt) 1988. Vegetation ecology of Central Europe. Fourth edition. Cambridge University Press, Cambridge.

    Google Scholar 

  • Foster, B. L. & Gross, K. L. 1998. Species richness in a successional grassland: effects of nitrogen enrichment and plant litter. Ecology 79: 2593–2602.

    Google Scholar 

  • Fowler, N. 1982. Competition and coexistence in a North Carolina grassland. III. Mixtures of component species. J. Ecol. 70: 77–92.

    Google Scholar 

  • Fowler, N. 1986. The role of competition in plant communities in arid and semiarid regions. Ann. Rev. Ecol. Syst. 17: 89–110.

    Google Scholar 

  • Gause, G. F. 1934. The Struggle for Existence. Williams & Wilkins, Baltimore.

    Google Scholar 

  • Gigon, A. & Ryser, P. 1986. Positive Interaktionen zwischen Pflanzenarten. Veröff. Geobot. Inst. ETH, Stiftung Rübel 87: 372–387.

    Google Scholar 

  • Goldberg, D. E. & Barton, A. M. 1992. Patterns and consequences of interspecific competition in natural communities: a review of field experiments with plants. Am. Nat. 139: 771–801.

    Google Scholar 

  • Greenlee, J. T. & Callaway, R. M. 1996. Abiotic stress and the relative importance of interference and facilitation in montane bunchgrass communities in Western Montana. Am. Nat. 148: 386–396.

    Google Scholar 

  • Grime, J. P. 1973. Competitive Exclusion in Herbaceous Vegetation. Nature 242: 344–347.

    Google Scholar 

  • Grime, J. P. 1979. Plant strategies and vegetation processes. J. Wiley & Sons, Chichester, UK.

    Google Scholar 

  • Grubb, P. J. 1977. The maintenance of species-richness in plant communities: the importance of the regeneration niche. Biol. Rev. 52: 107–145.

    Google Scholar 

  • Grubb, P. J. 1985. Plant populations and vegetation in relation to habitat, disturbance and competition: problems of generalization. Pp. 595–621. In: White, J. (ed.), The population structure of vegetation. Dr W. Junk Publishers, Dordrecht.

    Google Scholar 

  • Gurevitch, J., Morrow, L. L., Wallace, A. & Walsh, J. S. 1992. A meta-analysis of competition in field experiments. Am. Nat. 140: 539–572.

    Google Scholar 

  • Hall, R. L. 1974. Analysis of the nature of interference between plants of different species. I. Concepts and extension of de Wit analysis to examine effects. Austr. J. Agric. Res. 25: 739–747.

    Google Scholar 

  • Harper, J. L. 1963. The nature and consequence of interference amongst plants. Pp. 465–482. In: Proc. 11th International Congress of Genetics. Pergamon Press, London, UK.

    Google Scholar 

  • Harper, J. L. 1977. Population Biology of Plants. Academic Press, London.

    Google Scholar 

  • Herben, T. & Krahulec, F. 1990. Competitive hierarchies, reversals of rank order and the de Wit approach: are they compatible? Oikos 58: 254–256.

    Google Scholar 

  • Holt, R. D. 1977. Predation, apparent competition, and the structure of prey communities. Theor. Pop. Biol. 12: 197–229.

    Google Scholar 

  • Hutchinson, E. 1961. The paradox of the plankton. Am. Nat. 95: 137–145.

    Google Scholar 

  • Kadmon, R. 1995. Plant competition along soil moisture gradients: a field experiment with the desert annual Stipa capensis. J. Ecol. 83: 253–262.

    Google Scholar 

  • Kareiva, P. M. & Bertness, M.D. 1997. Re-examining the role of positive interactions in communities. Ecology 78: 1945.

    Google Scholar 

  • Keddy, P. A. 1989. Competition. Chapman and Hall, London.

    Google Scholar 

  • Keddy, P. A. 1990. Competitive hierarchies and centrifugal organization in plant communities. Pp. 265–289. In: Grace, J.B. & Tilman, D. (eds), Perspectives on plant competition. Academic Press, San Diego, USA.

    Google Scholar 

  • Keddy, P. A. & Shipley, B. 1989. Competitive hierarchies in herbaceous plant communities. Oikos 54: 234–241.

    Google Scholar 

  • Keddy, P., Twolan-Strutt, L. & Shipley, B. 1997. Experimental evidence that interspecific competitive asymmetry increases with soil productivity. Oikos 80: 253–256.

    Google Scholar 

  • Kershaw, K. A. & Looney, J. H. H. 1985. Quantitative and dynamic plant ecology. 3rd edition. Edward Arnold, London (cited in Wilson 1990).

    Google Scholar 

  • Lehmann, C. & Rebele, F. 1994. Zum Potential sexueller Fortpflanzung bei Calamagrostis epigejos (L.) Roth. Verh. Ges. Ökol. 23: 445–450.

    Google Scholar 

  • Louda, S. M., Keeler, K. H. & Holt, R. D. 1990. Herbivore influences on plant performance and competitive interactions. Pp. 413–444. In: Grace, J. B. & Tilman, D. (eds), Perspectives on plant competition. Academic Press, San Diego, USA.

    Google Scholar 

  • Mattson, W. J. 1980. Herbivory in relation to plant nitrogen content. Ann. Rev. Ecol. Syst. 11: 119–161.

    Google Scholar 

  • Newman, E. I. 1973. Competition and diversity in herbaceous vegetation. Nature 244: 310.

    Google Scholar 

  • Peltzer, D. A., Wilson, S. D. & Gerry, A. K. 1998. Competition intensity along a productivity gradient in a low-diversity grassland. Am. Nat. 151: 465–476.

    Google Scholar 

  • Rebele, F. 1996a. Calamagrostis epigejos (L.) Roth auf anthropogenen Standorten-ein Ñberblick. Verh. Ges. Ökol. 26: 753–763.

    Google Scholar 

  • Rebele, F. 1996b. Konkurrenz und Koexistenz bei ausdauernden Ruderalpflanzen. Verlag Dr. Kovac, Hamburg, Germany.

    Google Scholar 

  • Reynolds, H. L., Hungate, B. A., Chapin III, F. S. & D'Antonio, C. M. 1997. Soil heterogeneity and plant competition in an annual grassland. Ecology 78: 2076–2090.

    Google Scholar 

  • Schlichting, E., Blume, H.-P. & Stahr, K. 1995. Bodenkundliches Praktikum. 2nd edition. Blackwell Wissenschafts-Verlag, Berlin.

    Google Scholar 

  • Schmidt, W. 1981. Ñber das Konkurrenzverhalten von Solidago canadensis und Urtica dioica. Verh. Ges. Ökol. 9: 173–188.

    Google Scholar 

  • Schoener, T. W. 1983. Field experiments on interspecific competition. Am. Nat. 122: 240–285.

    Google Scholar 

  • Shipley, B. & Keddy, P. A. 1994. Evaluating the evidence for competitive hierarchies in plant communities. Oikos 69: 340–345.

    Google Scholar 

  • Shmida, A. & Ellner, S. 1984. Coexistence of plant species with similar niches. Vegetatio 58: 29–55.

    Google Scholar 

  • Silvertown, J. W. 1987. Introduction to plant population ecology, 2nd edition. Longman, Harlow.

    Google Scholar 

  • Silvertown, J., Holtier, S., Johnson, J. & Dale, P. 1992. Cellular automaton models of interspecific competition for space-the effect of pattern on process. J. Ecol. 80: 527–534.

    Google Scholar 

  • Sokal, R. R. & Rohlf, F. J. 1981. Biometry, 2nd edition. W.H. Freeman, San Francisco, California.

    Google Scholar 

  • Tansley, A. G. & Adamson, R. S. 1925. Studies on the vegetation of the English chalk. III. The chalk grasslands of the Hampshire-Sussex border. J. Ecol. 13: 177–223.

    Google Scholar 

  • Tilman, D. 1982. Resource competition and community structure. Princeton University Press, Princeton, NJ, USA.

    Google Scholar 

  • Tilman, D. 1985. The resource-ratio hypothesis of plant succession. Am. Nat. 125: 827–852.

    Google Scholar 

  • Tilman, D. 1987. On the meaning of competition and the mechanisms of competitive superiority. Funct. Ecol. 1: 304–315.

    Google Scholar 

  • Tilman, D. 1988. Plant Strategies and the Dynamics and Structure of Plant Communities. Princeton University Press, Princeton, NJ, USA.

    Google Scholar 

  • Tilman, D. 1990. Constraints and tradeoffs: toward a predictive theory of competition and succession. Oikos 58: 3–15.

    Google Scholar 

  • Tilman, D. & Pacala, S. 1993. The maintenance of species richness in plant communities. Pp. 13–25. In: Ricklefs, R.E. & Schluter, D. (eds), Species diversity in ecological communities. University of Chicago Press, Chicago, Illinois, USA.

    Google Scholar 

  • Trenbath, B. R. 1974. Biomass productivity of mixtures. Adv. Agron. 26: 177–210.

    Google Scholar 

  • Twolan-Strutt, L. & Keddy, P.A. 1996. Above-and below-ground competition intensity in two contrasting wetland plant communities. Ecology 77: 259–270.

    Google Scholar 

  • Weber, E. 1997. Morphological variation of the introduced perennial Solidago canadensis L. sensu lato (Asteraceae) in Europe. Bot. J. Linnean Soc. 123: 197–210.

    Google Scholar 

  • Weber, E. & Schmid, B. 1993. Das Neophytenproblem. Festschrift Zoller. Dissertationes Botanicae 196: 209–227.

    Google Scholar 

  • Wedin, D. & Tilman, D. 1993. Competition among grasses along a nitrogen gradient: initial conditions and mechanisms of competition. Ecol. Monog. 63: 199–229.

    Google Scholar 

  • Weiher, E. & Keddy, P. A. 1995. The assembly of experimental wetland plant communities. Oikos 73: 323–335.

    Google Scholar 

  • Weiner, J. 1986. How competition for light and nutrients affects size variability in Ipomea tricolor populations. Ecology 67: 1425–1427.

    Google Scholar 

  • Weiner, J. 1990. Asymmetric Competition in Plant Populations. TREE 5: 360–364.

    Google Scholar 

  • Welden, C. W. & Slauson, W. L. 1986. The intensity of competition versus its importance: an overlooked distinction and some implications. Quart. Rev. Biol. 61: 23–44.

    Google Scholar 

  • Werner, P. A., Bradbury, I. K. & Gross, R. S. 1980. The biology of Canadian weeds. 45. Solidago canadensis L. Can. J. Plant Sci. 60: 1393–1409.

    Google Scholar 

  • Wilson, J. B. 1988. The effect of initial advantage on the course of plant competition. Oikos 51: 19–24.

    Google Scholar 

  • Wilson, J. B. 1990. Mechanisms of species coexistence: twelve explanations for Hutchinson's' paradox of the plankton': evidence from New Zealand plant communities. New Zealand J. Ecol. 13: 17–42.

    Google Scholar 

  • Wilson, S. D. & Keddy, P. A. 1986. Species competitive ability and position along a natural stress/disturbance gradient. Ecology 67: 1236–1242.

    Google Scholar 

  • Wisheu, I. C. & Keddy, P. A. 1992. Competition and centrifugal organization of ecological communities: theory and tests. J. Veg. Sci. 3: 147–156.

    Google Scholar 

  • Wit, C. T. de. 1960. On competition. Versl. Landbouwk. Onderzoek. No. 66.8:1-82. Pudoc, Wageningen, The Netherlands.

    Google Scholar 

  • Wit, C. T. de & van den Bergh, J. P. 1965. Competition between herbage plants. The Netherlands J. Agric. Sci. 13: 212–221.

    Google Scholar 

  • Yodzis, P. 1986. Competition, mortality and community structure. Pp. 480–491. In: Diamond, J. & Case, T.J. (eds), Community Ecology. Harper & Row Publishers, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rebele, F. Competition and coexistence of rhizomatous perennial plants along a nutrient gradient. Plant Ecology 147, 77–94 (2000). https://doi.org/10.1023/A:1009808810378

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009808810378

Navigation