Skip to main content
Log in

The DNLR Approach and Relaxation Phenomena. Part I – Historical Account and DNLR Formalism

  • Published:
Mechanics of Time-Dependent Materials Aims and scope Submit manuscript

Abstract

The relaxation phenomena defined by De Groot and Mazur (1962)describe the internal reorganizations linked to the return toequilibrium of media subjected to external perturbations of lowamplitude (near the equilibrium state). Far from equilibrium, anytheoretical approach to these phenomena has to include the followinginformation: the internal reorganizations are multiple and theirkinetics are nonlinear. Indeed, much experimental evidence has lead tothis conclusion. A classical example for the analysis of relaxationsnear the glass transition is the experimental study of the volumerecovery of PVAc (Polyvinylacetate) done by Kovacs (1963).

Over many years, we have developed an approach in the framework ofirreversible thermodynamics, called the Distribution of Non-LinearRelaxations (DNLR) to establish constitutive laws for various materialsunder coupled physical solicitations. It is based on a generalization ofthe fundamental Gibbs equation (1902) for systems outside equilibrium.This relation combines the two laws of thermodynamics into a singleexpression; for example, the internal energy e =e(s, v, n i , ¨)depends on the whole of the state variables, including theentropy s. The salient points of the DNLR approach are (i)to naturally take account of the couplings found in physics, (ii) themultiplicity of the mechanisms of internal reorganization and (iii) thenonlinearity of the kinetics for the return to equilibrium.

The aim of this paper is then (i) to present in this first part thebases, the formalism, and the framework of the DNLR approach and (ii) ina second part to check the pertinence of this general DNLR strategy tosimulate the experimental data of Kovacs concerning PVAc. This developedmodeling will be compared to other works already done in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andrade, E.N. Da C., ‘On the viscous flow in metals and allied phenomena', Proc. Roy. Soc. London A 84, 1910, 1.

    Google Scholar 

  • Arruda, E.M. and Boyce, M.C., ‘A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials', J. Mech. Phys. Solids 41(2), 1993, 389–412.

    Google Scholar 

  • Ayadi, Z., ‘Contribution à la modélisation du comportement mécanique de polymè res à partir d'une approche thermodynamique de la relaxation des milieux continues — Application aux expériences de fluage/recouvrance', INPL Thesis, Nancy, France, 1995.

  • Biot, M.A., ‘Theory of stress-strain relaxations in anisotropic viscoelasticity and relaxation phenomena', J. Appl. Phys. 25(11), 1954, 1385–1391.

    Google Scholar 

  • Boltzmann, L., ‘Zur Theorie der elastischen Nachwirkung', Sitzungsber. Kaiserlich Akad. Wiss., Math. Naturwiss., Wien 70, 1874, 275–306.

    Google Scholar 

  • Boltzmann, L., Vorlesungen zur Gastheorie, Barth, Leipzig, 1896.

    Google Scholar 

  • Caratheodory, C., ‘Untersuchungen über die Grundlagen der Theromodynamik', Math Ann. 67, 1909, 335–386.

    Google Scholar 

  • Coleman, B.D., ‘On thermodynamics of materials with memory', Arch. Rat.Mech. Anal. 17(1), 1964, 1–46.

    Google Scholar 

  • Cunat, Ch., ‘Approche statistique des propriétés thermodynamiques des états liquides et vitreux — Relaxation des liquides et transition vitreuse — Influence des associations chimiques', Thesis Nancy, France, 1985.

  • Cunat, Ch., ‘Thermodynamic treatment of relaxation in frozen-in systems — Universality of the fluctuation distribution law for relaxation time', Z. Phys. Chem. Neue Folge 157, 1988a, 419–423.

    Google Scholar 

  • Cunat, Ch., ‘Theoretical analysis of the glass transition range — A kinematic modelisation of the reduced time — Comparison between experiments and simulations', Z. Phys. Chem. Neue Folge 157, 1988b, 425–429.

    Google Scholar 

  • Cunat, Ch., ‘A thermodynamic theory of relaxation based on a distribution of non-linear processes', J. Non-Crystalline Solids 131/133, 1991a, 196–199.

    Google Scholar 

  • Cunat, Ch., ‘A relaxation theory to explain the rheology of elasto-plastic materials', J. Non-Crystalline Solids 131/133, 1991b, 812–815.

    Google Scholar 

  • Cunat, Ch., ‘Lois constitutives de matériaux complexes stables ou vieillissants — Apports de la thermodynamique de la relaxation', Rev. Gen. Therm. 35, 1996, 680–685.

    Google Scholar 

  • Cunat, Ch., ‘Réflexion sur la construction des lois de comportement des polymè res en vue de leur intégration dans des codes de calcul de structures', in Eléments Finis Polymè res, C. G'sell and J.C. Grandidier (eds), Appollor Nancy, France, 1999, to appear.

  • Cunat, Ch., Hilzinger, H.R. and Herzer, G., ‘Relaxation parameter to simulate the change of magnetostriction in amorphous magnetic alloys', Mater. Sci. Engrg. 97, 1988, 497–500.

    Google Scholar 

  • Davies, R.O. and Jones, G.O., ‘Thermodynamics and kinetic properties of glasses', Adv. Phys. (Philos. Mag. Suppl.) 2, 1953, 370–410.

    Google Scholar 

  • De Donder, T., Leç on de thermodynamique et de chimie physique, Gauthiers-Villars, Paris, 1920.

    Google Scholar 

  • De Groot, S.R. and Mazur, P., Nonequilibrium Thermodynamics, North Holland, Amsterdam, 1962.

    Google Scholar 

  • Einstein, A., ‘Theorie der Opalessenz von homogenen Flüssigkeiten und Flüssigkeitsgemischen in der Nähe des kritischen Zustandes', Ann. Physik 33, 1910, 1275–1298.

    Google Scholar 

  • Faccio-Toussaint, E., ‘Thermodynamique non linéaire des processus irréversibles et comportement mécanique des matériaux — Modélisation et interprétation microphysique', INPL Thesis, Nancy, France, 1997.

  • Gibbs, J.W., Collected Works, Scribner, New York, 1902.

    Google Scholar 

  • Haddad, A., ‘Thermodynamique de la relaxation appliquée à la modélisation du comportement des polymè res, INPL Thesis, Nancy, France, 1996.

  • Jou, D., Casasvazquez, J. and Lebon, G., Extended Thermodynamics, Springer-Verlag, Berlin, 1993.

    Google Scholar 

  • Kovacs, A.J., ‘Transition vitreuse dans les polymè res amorphes — Etude phénoménologique', Fortschr. Hochpol. Forsch. 3, 1963, 394–507.

    Google Scholar 

  • Landau, L.D. and Lifchitz, A.M., Statistical Physics, Pergamon Press, Oxford, 1958.

    Google Scholar 

  • Leadermann. H. Elastic and Creep Properties of Filamentous Materials and Other High Polymers, The Textile Fondation, Washington, DC, 1943, Chap. VI.

    Google Scholar 

  • Loukil, M., ‘Modélisation des surfaces de plasticité à partir d'une approche de la thermodynamique de la relaxation des milieux continus', INPL Thesis, Nancy, France, 1996.

  • Mandel, J., Cours de Mécanique des Milieux Continus, Gauthier-Villars, Paris, 1966.

    Google Scholar 

  • Marceron, P., ‘Sur le rô le des potentiels généralisés en thermodynamique de la relaxation — Application au comportement mécanique des polymè res', INPL Thesis, Nancy, France, 1999.

  • Marceron, P., Pilvin, P. and Cunat, Ch., ‘Implantation du modè le de comportement DNLR dans un code éléments finis', in Eléments Finis Polymè res, C. G'sell and J.C. Grandidier (eds), Apollor Nancy, France, 1999, to appear.

    Google Scholar 

  • Maugin, G.A., ‘Thermodynamics with internal variables. Part I. General concepts', J. Non-Equilib. Thermodyn. 19, 1994a, 217–249.

    Google Scholar 

  • Maugin, G.A., ‘Thermodynamics with internal variables. Part II. Applications', J. Non-Equilib. Thermodyn. 19, 1994b, 250–289.

    Google Scholar 

  • Meixner, J.Z., ‘Thermodynamik und Relaxationserscheinungen', Naturforsch. 4a, 1949, 504–600.

    Google Scholar 

  • Mooney, M., A Theory of Large Elastic Deformation, United States Rubber Company, Passaic, NJ, 1940.

    Google Scholar 

  • Moynihan, T.C. and Gupta, K., ‘The order parameter model for structural relaxation in glass', J. Non-Crystalline Solids 29, 1978, 143–158.

    Google Scholar 

  • Münster, A., Thermodynamique des Processus Irréversibles, I.N.S.T.N. et P.U.F., Paris, 1966.

    Google Scholar 

  • Narayanaswamy, O.S., ‘A model of structural relaxation in glass', J. Amer. Ceram. Soc. 54, 1971, 491–498.

    Google Scholar 

  • Onsager, L., ‘Reciprocal relations in irreversible processes (I)', Phys. Rev. 37, 1931a, 405–426.

    Google Scholar 

  • Onsager, L., ‘Reciprocal relations in irreversible processes (II)', Phys. Rev. 38, 1931b, 2265–2279.

    Google Scholar 

  • Perez, J.P., Thermodynamique — Fondements et Applications, Masson, Paris, 1997.

    Google Scholar 

  • Prigogine, I., Introduction à la Thermodynamique des Processus Irréversibles, Dunod, Paris, 1968.

    Google Scholar 

  • Prigogine, I., Physique Temps et Devenir, 2nd edn., Masson, Paris, 1982.

    Google Scholar 

  • Prigogine, I. and Defay, R., Thermodynamique Chimique, Dunod, Paris, 1946.

    Google Scholar 

  • Rahouadj, R., Sidoroff, F. and Cunat, Ch., ‘From Biot's approach to the irreversibility to the DNLR formalism', in preparation.

  • Rayleigh Lord (J.W. Strutt), Theory of Sound, MacMillan London, 1877.

  • Rivlin, R.S., ‘Large elastic deformation of isotropic materials', Philos. Trans. Roy. Soc. A 241, 1948, 379–397.

    Google Scholar 

  • Sauter, F., Leclerc, S. and Cunat, Ch., ‘Modeling of the viscoplastic behavior of the nuclear fuel pellet', in Constitutive and Damage Modeling of Inelastic Deformation and Phase Transformation, A.S. Khan (ed.), Neat Press, Fulton, MD, 1999, 95–98.

    Google Scholar 

  • Say, R.M. Jr. and Caruthers, J.M., ‘A predictive model for the effect of thermal history on the mechanical behavior of amorphous polymers’ Polym. Eng. Sci. 30, 1990, 1266–1280.

    Google Scholar 

  • Say, R.M. Jr., Lustig, S.R. and Caruthers, J.M., ‘Thermodynamic constitutive equations for materials with memory on a material time', J. Rheol. 40(1), 1996, 69–106.

    Google Scholar 

  • Schapery, R.A., ‘Application of thermodynamics to thermomechanical fracture and birefringent phenomena in viscoelastic media', J. Appl. Phys. 35(5), 1964, 1451–1465.

    Google Scholar 

  • Schapery, R.A., ‘A theory on non-linear thermoviscoelasticity based on irreversible thermodynamics', in Proceedings 5th US National Congress on Applied Mechanics, ASME, New York, 1966, 511–530.

    Google Scholar 

  • Schapery, R.A., ‘Characterization of non-linear, time-dependent polymers and polymeric composites for durability analysis', in Progress in Durability of Composite Systems, Cardon, Fukuda and Reifsnider (eds), Balkema, Rotterdam, 1996.

    Google Scholar 

  • Simon, F., ‘25 Jahre Nernstcher Wärmesatz', Ergeb. Exact. Naturwiss. 9, 1930, 222–274.

    Google Scholar 

  • Tisza, L., Generalized Thermodynamics, MIT Press, Cambridge, MA, 1966.

    Google Scholar 

  • Tool, A.Q. and Eichlin, C.G., ‘Variation caused in heating curves of glass by heat treatment', J. Amer. Ceram. Soc. 14, 1931, 276–308.

    Google Scholar 

  • Valanis, K.C., ‘A theory of viscoplasticity without a yield surface — Part I. General theory', Arch. Mech. 23(4), 1971a, 517–533.

    Google Scholar 

  • Valanis, K.C., ‘A theory of viscoplasticity without a yield surface — Part II. Application to mechanical behavior of metals', Arch. Mech. 23(4), 1971b, 535–551.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cunat, C. The DNLR Approach and Relaxation Phenomena. Part I – Historical Account and DNLR Formalism. Mechanics of Time-Dependent Materials 5, 39–65 (2001). https://doi.org/10.1023/A:1009899519935

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009899519935

Navigation