Skip to main content
Log in

Low-Temperature CH4 Total Oxidation on Catalysts Based on High Surface Area SnO2

  • Published:
Reaction Kinetics and Catalysis Letters Aims and scope Submit manuscript

Abstract

Pure SnO2, sulfated SnO2-SO4 2- and Pd supported on SnO2 and SnO2-SO4 2- were prepared from SnO2 precursor with high surface area, and used for CH4 deep oxidation. The catalysts were characterized by means of N2-BET, XRD, TG-DTA, XPS and TPD. SnO2-SO4 2- shows higher activity than SnO2, due to the presence of more active oxygen species, superacid sites and its higher BET surface area. Pd/SnO2 and Pd/SnO2-SO4 2- display essentially the same activity to each other, while it is much higher than the activity on SnO2 and SnO2-SO4 2-. The main reason is ascribed to the concerted action between Pd and the supports.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Y. Li, J. Armor: Appl. Catal. B, 3, 275 (1994).

    Google Scholar 

  2. Lj. Kundakovic, M. Flytzani-Stephanopoulos: Appl. Catal. A, 183, 35 (1999).

    Google Scholar 

  3. E.S. Rubin, R.N. Cooper, R.A. Frosch, T.H. Lee, G. Marland, A.H. Rosenfield, D.D. Stine: Science, 257, 148 (1992).

    Google Scholar 

  4. M.M. Zwinkel, S.G. Jaras, P.C. Menon: Catal. Rev. Sci. Eng., 35, 319 (1993).

    Google Scholar 

  5. Y. Gao, H. Zhao, B. Zhao: J. Mater. Sci., 35, 917 (2000).

    Google Scholar 

  6. M.J. Fuller, M.E. Warwick: J. Catal., 29, 441 (1973).

    Google Scholar 

  7. G.C. Bond, L.R. Molloy, M.J. Fuller: J. Chem. Soc. Chem. Comm., 796 (1975).

  8. A. Boulahouache, G. Kons, H.G. Lintz, P. Schulz: Appl. Catal. A, 91, 115 (1992).

    Google Scholar 

  9. M.M. Gadgil, R. Sasikala, S.K. Kulshreshtha: J. Mol. Catal., 87, 297 (1994).

    Google Scholar 

  10. K. Sekizawa, H. Widjaja, S. Maeda, Y. Ozawa, K. Eguchi: Appl. Catal. A, 200, 211 (2000).

    Google Scholar 

  11. L. Moens, P. Ruiz, B. Delmon, M. Devillers: Catal. Lett., 46, 93 (1997).

    Google Scholar 

  12. M. C. Kung, P. W. Park, D. W. Kim, H. H. Kung: J. Catal., 181,pp1 (1999).

    Google Scholar 

  13. J. Ma, Y. X. Zhu, J. Y. Wei, X. H. Cai, Y. C. Xie: Stud. Surf. Sci. Catal., 130, pp617 (2000).

    Google Scholar 

  14. X. Song, A. Sayari: Catal. Rev. Sci. Eng., 38, 329 (1996).

    Google Scholar 

  15. F. Lonyi, J. Valyon, J. Engelhardt, F. Mizukami: J. Catal., 160, 279 (1996).

    Google Scholar 

  16. T. M. Jyothi, K. Sreekumar, M. B. Talawar, A. A. Belhekar, B. S. Rao, S. Sugunan: Bull. Chem. Soc. Jpn., 73, 1285 (2000).

    Google Scholar 

  17. W. M. Hua, Z. Gao: Appl. Catal. b, 17, 37 (1998).

    Google Scholar 

  18. X. Wang, Y. C. Xie: React. Kinet. Catal. Lett., 70, 43 (2000).

    Google Scholar 

  19. Y. C. Xie, Y. Q. Tang: Adv. Catal., 37, 1 (1990).

    Google Scholar 

  20. F. Solymosi, J. Raskó, E. Papp, A. Oszko, T. Bánsági: Appl. Catal. A, 131, 55 (1995).

    Google Scholar 

  21. H. Widjaja, K. Sekizawa, K. Eguchi: Bull. Chem. Soc. Jpn., 72, 313 (1999).

    Google Scholar 

  22. M. Machida, K. Eguchi, H. Arai: J. Catal., 103, 385 (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X., Xie, Yc. Low-Temperature CH4 Total Oxidation on Catalysts Based on High Surface Area SnO2. Reaction Kinetics and Catalysis Letters 72, 115–123 (2001). https://doi.org/10.1023/A:1010592800342

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010592800342

Navigation