Skip to main content
Log in

Grain Boundary Grooving as an Indicator of Grain Boundary Phase Transformations

  • Published:
Interface Science

Abstract

The atomic force microscopy (AFM) was used to study the grain boundary (GB) groove profiles far away from the melting temperature T m. It is shown that AFM allows one to measure the temperature dependence of the GB energy in a rather broad temperature interval (from 0.85 T m to T m). The GB energy and GB segregation of Bi were measured at 1123 K in the interval of the Bi bulk concentration x v Bi from 5 to 140 ppm Bi. The transition from monolayer to multilayer adsorption is observed for the Σ19a GB at 1123 K and x v Bi = 60 at. ppm Bi. At the same point (1123 K and x v Bi = 60 at. ppm Bi) a discontinuity of the first derivative of the GB energy is observed. These features were explained using the model of GB prewetting phase transformation developed previously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Dietrich, in Phase Transitions and Critical Phenomena, edited by C. Domb and J.H. Lebowitz (Academic, London, 1988), Vol. 12, p. 2.

    Google Scholar 

  2. D. Jasnov, Rep. Prog. Phys. 47, 1059 (1984).

    Google Scholar 

  3. G. de Gennes, Rev. Mod. Phys. 57, 827 (1985).

    Google Scholar 

  4. E.L. Maksimova, E.I. Rabkin, L.S. Shvindlerman, and B.B. Straumal, Acta Metall. 37, 1995 (1989).

    Google Scholar 

  5. B.B. Straumal and L.S. Shvindlerman, Acta Metall. 33, 1735 (1985).

    Google Scholar 

  6. E.L. Maksimova, L.S. Shvindlerman, and B.B. Straumal, Acta Metall. 36, 1573 (1988).

    Google Scholar 

  7. E.L. Maksimova, L.S. Shvindlerman, and B.B. Straumal, Acta Metall. 37, 2855 (1989).

    Google Scholar 

  8. S.E. Babcock and R.W. Balluffi, Phil. Mag. A, 55, 643 (1987).

    Google Scholar 

  9. T.E. Hsieh and R.W. Balluffi, Acta Metall. 37, 1637 (1989).

    Google Scholar 

  10. T.G. Ference and R.W. Balluffi, Script. Metall. 22, 1929 (1988).

    Google Scholar 

  11. F. Ernst, M.W. Finnis, A. Koch, C. Schmidt, B. Straumal, and W. Gust, Z. Metallk. 87, 911 (1996).

    Google Scholar 

  12. T. Muschik, W. Laub, M.W. Finnis, and W. Gust, Z. Metallk. 84, 596 (1993).

    Google Scholar 

  13. B. Straumal, T. Muschik, W. Gust, and B. Predel, Acta Metall. Mater. 40, 939 (1992).

    Google Scholar 

  14. B. Straumal, D. Molodov, and W. Gust, J. Phase Equilibria 15, 386 (1994).

    Google Scholar 

  15. B. Straumal, W. Gust, and D. Molodov, Interface Sci. 3, 127 (1995).

    Google Scholar 

  16. B.B. Straumal, W. Gust, and T. Watanabe, Mater. Sci. Forum 294-296, 411 (1999).

    Google Scholar 

  17. B. Straumal, D. Molodov, and W. Gust, Mater. Sci. Forum 207-209, 437 (1996).

    Google Scholar 

  18. B. Straumal, S. Risser, V. Sursaeva, B. Chenal, and W. Gust, J. Physique IV 5-C7, 233 (1995).

    Google Scholar 

  19. E.I. Rabkin, V.N. Semenov, L.S. Shvindlerman, and B.B. Straumal, Acta Metall. Mater. 39, 627 (1991).

    Google Scholar 

  20. O.I. Noskovich, E.I. Rabkin, V.N. Semenov, L.S. Shvindlerman, and B.B. Straumal, Acta Metall. Mater. 39, 3091 (1991).

    Google Scholar 

  21. B.B. Straumal, O.I. Noskovich, V.N. Semenov, L.S. Shvindlerman, W. Gust, and B. Predel, Acta Metall. Mater. 40, 795 (1992).

    Google Scholar 

  22. B. Straumal, E. Rabkin, W. Lojkowski, W. Gust, and L.S. Shvindlerman, Acta Mater. 45, 1931 (1997).

    Google Scholar 

  23. E.I. Rabkin, L.S. Shvindlerman, and B.B. Straumal, Int. J. Mod. Phys. B 5, 2989 (1991).

    Google Scholar 

  24. R.H. French, H. Müllejans, D.J. Jones, G. Duscher, R.M. Cannon, and M. Rühle, Acta Mater. 46, 2271 (1998) and references therein.

    Google Scholar 

  25. E.I. Rabkin, L.S. Shvindlerman, and B.B. Straumal, J. Less-Common Met. 158, 23 (1990).

    Google Scholar 

  26. E.I. Rabkin, L.S. Shvindlerman, and B.B. Straumal, J. Less-Common Met. 159, 43 (1990).

    Google Scholar 

  27. D.A. Molodov, U. Czubayko, G. Gottstein, L.S. Shvindlerman, B.B. Straumal, and W. Gust, Phil. Mag. Lett. 72, 361 (1995).

    Google Scholar 

  28. L.-S. Chang, E. Rabkin, B. Straumal, P. Lejcek, S. Hofmann, and W. Gust, Scripta Mater. 37, 729 (1997).

    Google Scholar 

  29. L.-S. Chang, E. Rabkin, B.B. Straumal, S. Hofmann, B. Baretzky, and W. Gust, Defect Diff. Forum 156, 135 (1998).

    Google Scholar 

  30. L.-S. Chang, E. Rabkin, B.B. Straumal, B. Baretzky, and W. Gust, Acta Mater. 47, 4041 (1999).

    Google Scholar 

  31. P.W. Bridgman, Proc. Am. Ac. Arts Sci. 58, 163 (1923).

    Google Scholar 

  32. Q.-H. Li and L.-D. Zhang, Acta Met. Sinica, 31(3), 130 (1995) (in Chinese).

    Google Scholar 

  33. L.-S. Chang, Ph.D. thesis, University of Stuttgart, 1998.

  34. W.W. Mullins, J. Appl. Phys. 28, 333 (1957).

    Google Scholar 

  35. W.W. Mullins, Trans. AIME 218, 354 (1960).

    Google Scholar 

  36. W.W. Mullins and P.G. Shewmon, Acta Metall. 7, 163 (1959).

    Google Scholar 

  37. C. Herring, The Physics of Powder Metallurgy (McGraw-Hill, New York, 1951), p. 143.

    Google Scholar 

  38. J. Schoellhammer, L.-S. Chang, E. Rabkin, B. Baretzky, W. Gust, and E.J. Mittemeijer, Z. Metallkd. 90, 687 (1999).

    Google Scholar 

  39. A.N. Aleshin, S.I. Prokofjev, and L.S. Shvindlerman, Scripta Metall. 19, 1135 (1985).

    Google Scholar 

  40. R. Schmelzle, T. Muschik, W. Gust, and B. Predel, Scripta Metall. 25, 1981 (1991).

    Google Scholar 

  41. U. Wolf, F. Ernst, T. Muschik, and M.W. Finnis, Phil. Mag. A 66, 991 (1992).

    Google Scholar 

  42. B. Baretzky, B. Reinsch, U. Täffner, G. Schneider, and M.Rühle, Z. Metallk. 87, 332 (1996).

    Google Scholar 

  43. C.A. Handwerker, J.M. Dynys, R.M. Cannon, and R.L. Coble, J. Amer. Ceram. Soc. 73, 1365 and 1371 (1990).

    Google Scholar 

  44. A. Tsoga and P. Nikolopoulos, J. Amer. Ceram. Soc. 77, 954 (1994).

    Google Scholar 

  45. E. Saiz, R.M. Cannon, and A.P. Tomsia, Acta Mater. 47, 4209 (1999).

    Google Scholar 

  46. D.M. Saylor and G.S. Rohrer, J. Amer. Ceram. Soc. 82, 1529 (1999).

    Google Scholar 

  47. D.M. Saylor, D.E. Mason, and G.S. Rohrer, J. Amer. Ceram. Soc. 83, 1226 (2000).

    Google Scholar 

  48. R. Kikuchi and J.W. Cahn, Phys. Rev. B 36, 418 (1987).

    Google Scholar 

  49. J. Howe, Phil. Mag. A 74, 761 (1996).

    Google Scholar 

  50. Y.W. Lee and H.I. Aaronson, Acta Metall. 28, 539 (1980).

    Google Scholar 

  51. L.-S. Chang, B.B. Straumal, E. Rabkin, W. Gust, and F. Sommer, J. Phase Equilibria 18, 128 (1997).

    Google Scholar 

  52. R.A. Swalin, Thermodynamics of Solids (John Wiley & Sons, New York, 1972), p. 184.

    Google Scholar 

  53. B. Straumal, S.I. Prokofjev, L.-S. Chang, N.E. Sluchanko, B. Baretzky, and W. Gust, Defect Diff. Forum 194-199 (2001).

  54. N. Eustatopoulos, L. Coudurier, J.C. Joud, and P. Desre, J. Cryst. Growth 33, 105 (1976).

    Google Scholar 

  55. E. Budke, T. Surholt, S.I. Prokofjev, L.S. Shvindlerman, and Chr. Herzig, Acta Mater. 47, 385 (1999).

    Google Scholar 

  56. B. Joseph, F. Barbier, G. Dagoury, and M. Aucouturier, Scripta Mater. 39, 775 (1998).

    Google Scholar 

  57. B. Joseph, F. Barbier, and M. Aucouturier, Scripta Mater. 40, 893 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schölhammer, J., Baretzky, B., Gust, W. et al. Grain Boundary Grooving as an Indicator of Grain Boundary Phase Transformations. Interface Science 9, 43–53 (2001). https://doi.org/10.1023/A:1011266729152

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011266729152

Navigation