Skip to main content
Log in

Graph Cyclicity, Excess Conductance, and Resistance Deficit

  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

A new graph-theoretic cyclicity index C(G) is defined, being motivated in terms of mathematical concepts from the theory of electrical networks. This “global bond excess conductance” index C(G) then is investigated, with a number of theorems as well as some discussion and numerical investigation. It is found that C(G) typically has less degeneracy than the standard cyclomatic number and has some intuitively appealing features.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Kirchoff, Ann. Phys. Chem. 72 (1847) 497; reprinted English translation IRE Trans. Circuits Theory 5 (1958) 4.

    Google Scholar 

  2. C. Brown, Proc. Roy. Soc. Edinburgh 23 (1864) 707.

    Google Scholar 

  3. D. König, Theorie Der Endlichen und Unendlichen Graphen (Chelsea reprint, 1936).

  4. F. Harary, Graph Theory (Addison-Wesley, Reading, MA, 1969).

    Google Scholar 

  5. J.J. Sylvester, Amer. J. Math. 1 (1878) 64.

    Google Scholar 

  6. G. Polya, Acta Math. 68 (1937) 145; reprinted English translation in: Combinatorial Enumeration of Groups, Graphs, and Chemical Compounds, eds. G. Polya and R.C. Read (Springer, Berlin, 1987).

    Google Scholar 

  7. A.T. Balaban, Chemical Applications of Graph Theory (Academic Press, New York, 1976).

    Google Scholar 

  8. N. Trinajstić, Chemical Graph Theory (CRC Press, Boca Raton, FL, 1983).

    Google Scholar 

  9. J.C. Maxwell, A Treatise on Electricity and Magnetism (Clarendon, Oxford, 3rd edn., 1918; Dover, New York, 1954).

    Google Scholar 

  10. S. Seshu and M.B. Reed, Linear Graphs and Electrical Networks (Addison-Wesley, Reading, MA, 1961).

    Google Scholar 

  11. P.G. Doyle and J.L. Snell, Random Walks and Electric Networks (Math. Assoc. Amer., Washington, DC, 1984).

    Google Scholar 

  12. D.J. Klein and M. Randić, J. Math. Chem. 12 (1993) 81.

    Google Scholar 

  13. J.L. Palacios, Intl. J. Quantum Chem. 81 (2001) 29, 135.

    Google Scholar 

  14. D. Bonchev, O. Mekenyan and N. Trinajstić, Intl. J. Quantum Chem. 17 (1980) 845.

    Google Scholar 

  15. D. Bonchev, A.T. Balaban, X. Liu and D.J. Klein, Intl. J. Quantum Chem. 50 (1994) 1.

    Google Scholar 

  16. W. Tutte, Connectivity in Graphs (University of Toronto Press, Toronto, 1966).

    Google Scholar 

  17. T. Pisanski, D. Plavšić and M. Randić, J. Chem. Inf. Comput. Sci. 40 (2000) 520.

    PubMed  Google Scholar 

  18. L.W. Shapiro, Math. Mag. 60 (1987) 36.

    Google Scholar 

  19. D.J. Klein, Comm. Math. Chem. (MatCh) 36 (1996) 7.

    Google Scholar 

  20. I. Lukovits, S. Nikolić and N. Trinajstić, Intl. J. Quantum Chem. 71 (1999) 217.

    Google Scholar 

  21. R.M. Foster, in: Contributions to Applied Mechanics (Edward Brothers, Ann Arbor, MI, 1949) pp. 333–340.

    Google Scholar 

  22. L. Weinberg, IRE Trans. Circuits Theory 5 (1958) 8.

    Google Scholar 

  23. F. Harary, private communication (~1995).

  24. V.E. Gollender, V.V. Drboglav and A.B. Rozenblit, J. Chem. Inf. Comput. Sci. 21 (1981) 196.

    Google Scholar 

  25. P.A. Filip, T.-S. Balaban and A.T. Balaban, J. Math. Chem. 1 (1987) 133.

    Google Scholar 

  26. O. Ivanciuc, T.-S. Balaban, P. Filip and A.T. Balaban, Commun. Math. Chem. 28 (1992) 151.

    Google Scholar 

  27. O. Ivanciuc, Models Chem. 137 (2000) 607.

    Google Scholar 

  28. K. Ruedenberg and C.W. Scherr, J. Chem. Phys. 21 (1953) 1565.

    Google Scholar 

  29. B.E. Eichenger, Macromolecules 18 (1985) 211.

    Google Scholar 

  30. M. Kunz, Comm. Math. Chem. (MatCh) 32 (1995) 221.

    Google Scholar 

  31. D.J. Klein and H.-Y. Zhu, J. Math. Chem. 23 (1998) 179.

    Google Scholar 

  32. B. Mohar, in: Graph Theory, Combinatorics, and Applications, eds. Y. Alavi, C. Chartrand, O.R. Oilermann and A. Schwenk (Wiley, New York, 1991) pp. 871–898.

    Google Scholar 

  33. R. Merris, Lin. Algebra Appl. 197/198 (1994) 143.

    Google Scholar 

  34. F.R.K. Chung, Spectral Graph Theory (Amer. Math. Soc., Providence, RI, 1997).

    Google Scholar 

  35. M. Fiedler, in: Combinatorial and Graph Theoretical Problems in Linear Algebra, eds. R.A. Brualdi, S. Friedland and V. Klee (Springer, Berlin, 1993) pp. 73–98.

    Google Scholar 

  36. F. Buckley and F. Harary, Distances in Graphs (Addison-Wesley, 1990).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klein, D., Ivanciuc, O. Graph Cyclicity, Excess Conductance, and Resistance Deficit. Journal of Mathematical Chemistry 30, 271–287 (2001). https://doi.org/10.1023/A:1015119609980

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015119609980

Navigation