Skip to main content
Log in

Noncontact Measurements of Thermophysical Properties of Molybdenum at High Temperatures

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Four thermophysical properties of both solid and liquid molybdenum, namely, the density, the thermal expansion coefficient, the constant-pressure heat capacity, and the hemispherical total emissivity, are reported. These thermophysical properties were measured over a wide temperature range, including the undercooled state, using an electrostatic levitation furnace developed by the National Space Development Agency of Japan. Over the 2500 to 3000 K temperature span, the density of the liquid can be expressed as ρ L(T)=9.10×103−0.60(TT m) (kg·m−3), with T m=2896 K, yielding a volume expansion coefficient α L(T)=6.6×10−5 (K−1). Similarly, over the 2170 to 2890 K temperature range, the density of the solid can be expressed as ρ S(T)=9.49×103−0.50(TT m), giving a volume expansion coefficient α S(T)=5.3×10−5. The constant pressure heat capacity of the liquid phase could be estimated as C PL(T)=34.2+1.13×10−3(TT m) (J·mol−1·K−1) if the hemispherical total emissivity of the liquid phase remained constant at 0.21 over the temperature interval. Over the 2050 to 2890 K temperature span, the hemispherical total emissivity of the solid phase could be expressed as ε TS(T)=0.29+9.86×10−5(TT m). The latent heat of fusion has also been measured as 33.6 kJ·mol−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. D. R. Lide and H. P. R. Frederikse (eds.), CRC Handbook of Chemistry and Physics, 78th ed. (CRC Press, Boca Raton, FL, 1997).

    Google Scholar 

  2. S. Yoda, N. Koshikawa, T. Nakamura, J. Yu, T. Nakamura, Y. Nakamura, S. Yoshitomi, H. Karasawa, T. Ikeda, Y. Arai, M. Kobayashi, Y. Awa, H. Shimoji, T. S. Morita, and S. Shimada, J. Jpn. Soc. Micrograv. Appl. 17:76 (2000).

    Google Scholar 

  3. P.-F. Paradis, T. Ishikawa, and S. Yoda, in Proc. Spacebound 2000 (Vancouver, B.C., Canada, 2000) (in press).

    Google Scholar 

  4. P.-F. Paradis, T. Ishikawa, and S. Yoda, in Proc. First Int. Symp. Micrograv. Res. Appl. Phys. Sci. Biotech. (Sorrento, Italy, Sept. 2000) (ESA SP-454) (2001), p. 993.

  5. T. Ishikawa, P.-F. Paradis, and S. Yoda, J. Jpn. Soc. Microgrev. Appl. 17:98 (2000).

    Google Scholar 

  6. T. Ishikawa, P.-F. Paradis, and S. Yoda, Rev. Sci. Instrum. 72:2490 (2001).

    Google Scholar 

  7. P.-F. Paradis, T. Ishikawa, and S. Yoda, submitted for publication.

  8. P.-F. Paradis, T. Ishikawa, J. Yu, and S. Yoda, Rev. Sci. Instrum. 72:2811 (2001).

    Google Scholar 

  9. P.-F. Paradis, T. Ishikawa, and S. Yoda, J. Mater. Sci. (in press).

  10. W.-K. Rhim, S.-K. Chung, D. Barber, K.-F. Man, G. Gutt, A. A. Rulison, and R. E. Spjut, Rev. Sci. Instrum. 64:2961 (1993).

    Google Scholar 

  11. W.-K. Rhim and T. Ishikawa, Rev. Sci. Instrum. 69:3628 (1998).

    Google Scholar 

  12. W.-K. Rhim and P.-F. Paradis, Rev. Sci. Instrum. 70:4652 (1999).

    Google Scholar 

  13. A. A. Rulison, J. L. Watkins, and B. Zambrano, Rev. Sci. Instrum. 68:2856 (1997).

    Google Scholar 

  14. W.-K. Rhim, private communication, Jet Propulsion Laboratory (Pasadena, CA, 1998).

  15. S.-K. Chung, D. B. Thiessen, and W.-K. Rhim, Rev. Sci. Instrum. 67:3175 (1996).

    Google Scholar 

  16. A. A. Rulison and W.-K. Rhim, Rev. Sci. Instrum. 65:695 (1994).

    Google Scholar 

  17. W. H. Hofmeister, M. B. Robinson, and R. J. Bayuzick, Appl. Phys. Lett. 49:1343 (1986).

    Google Scholar 

  18. D. Turnbull, J. Appl. Phys. 21:1022 (1950).

    Google Scholar 

  19. V. P. Eljutin, V. I. Kostikov, and I. A. Penkow, Poroshk. Met. 9:46 (1970).

    Google Scholar 

  20. U. Seydel and W. J. Kitzel, J. Phys. F Metal Phys. 9:L153 (1979).

    Google Scholar 

  21. V. Pekarev, Izv. Vys. Uch. Sav. Tsvetn. Met. (USSR) 6:111 (1963).

    Google Scholar 

  22. B. C. Allen, Trans. AIME 227:1175 (1963).

    Google Scholar 

  23. D. J. Steinberg, Metall. Trans. 5:1341 (1974).

    Google Scholar 

  24. J. A. Treverton and J. L. Margrave, Proc. 5th Symp. Thermophys. Props. (Boston, MA, 1970), pp. 489–494.

  25. I. Barin, O. Knacke, and O. Kubaschewski, Thermodynamic Properties of Inorganic Substances (Springer Verlag, Berlin, 1977).

    Google Scholar 

  26. A. Cezairliyan, M. S. Morse, H. A. Berman, and C. W. Beckett, J. Res. Natl. Bur. Stand. (U.S.) Phys. Chem. 74A:65 (1970).

    Google Scholar 

  27. G. A. Zhorov, High Temp. (USSR) 5:881 (1967).

    Google Scholar 

  28. B. A. Krustalev, I. P. Kolchenogova, and A. M. Rakov, High Temp. 1:13 (1963).

    Google Scholar 

  29. R. Hultgren, R. L. Orr, and K. K. Kelley, Supplement to Selected Values of Thermodynamic Properties of Alloys and Metals (Metals) (Lawrence Radiation Laboratory, Berkeley, CA, 1965).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paradis, PF., Ishikawa, T. & Yoda, S. Noncontact Measurements of Thermophysical Properties of Molybdenum at High Temperatures. International Journal of Thermophysics 23, 555–569 (2002). https://doi.org/10.1023/A:1015169721771

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015169721771

Navigation