Skip to main content
Log in

Linking Phase-Field and Atomistic Simulations to Model Dendritic Solidification in Highly Undercooled Melts

  • Published:
Interface Science

Abstract

Even though our theoretical understanding of dendritic solidification is relatively well developed, our current ability to model this process quantitatively remains extremely limited. This is due to the fact that the morphological development of dendrites depends sensitively on the degree of anisotropy of capillary and/or kinetic properties of the solid-liquid interface, which is not precisely known for materials of metallurgical interest. Here we simulate the crystallization of highly undercooled nickel melts using a computationally efficient phase-field model together with anisotropic properties recently predicted by molecular dynamics simulations. The results are compared to experimental data and to the predictions of a linearized solvability theory that includes both capillary and kinetic effects at the interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Trivedi and A. Karma,Encyclopedia of Applied Physics 23, 441 (1998).

    Google Scholar 

  2. W. Kurz and D.J. Fisher, Fundamentals of Solidification (Trans Tech, Switzerland, 1989).

  3. D. Kessler, J. Koplik, and H. Levine, Adv. Phys. 37, 255 (1988).

    Google Scholar 

  4. J.S. Langer, in Chance and Matter, Lectures on the Theory of Pattern Formation, Les Houches, Session XLVI, edited by J. Souletie, J. Vannimenus, and R. Stora (North Holland, Amsterdam, 1987), p. 629.

  5. A. Karma, in Branching in Nature, Lectures on Dendritic Growth, Les Houches, edited by V. Fleury, J.F. Gouyet, and M. Lonetti (EDP Sciences/Springer-Verlag, 2001), Vol. 13, Ch. XI, p. 365.

  6. G.P. Ivantsov, Dokl. Akad. Nauk SSSR 58, 567 (1947).

    Google Scholar 

  7. M.E. Glicksman, R.J. Schaefer, and J.D. Ayers, Metall. Trans. A 7, 1747 (1976).

    Google Scholar 

  8. D.A. Kessler, J. Koplik, and H. Levine, Phys. Rev. A 31, 1712 (1985).

    Google Scholar 

  9. E. Ben-Jacob, N.D. Goldenfeld, B.G. Kotliar, and J.S. Langer, Phys. Rev. Lett. 53, 2110 (1984).

    Google Scholar 

  10. J.S. Langer, Phys. Rev. A 33, 435 (1986).

    Google Scholar 

  11. D.A. Kessler and H. Levine, Phys. Rev. B 33, 7687 (1986).

    Google Scholar 

  12. D.I. Meiron, Phys. Rev. A 33, 2704 (1986).

    Google Scholar 

  13. M. Ben Amar and B. Moussallam, Physica D 25, 155 (1987).

    Google Scholar 

  14. A. Barbieri and J.S. Langer, Phys. Rev. A 39, 5314 (1989).

    Google Scholar 

  15. D.A. Kessler and H. Levine, Acta Metall. 36, 2693 (1988).

    Google Scholar 

  16. M. Ben Amar and E. Brener, Phys. Rev. Lett. 71, 589 (1993).

    Google Scholar 

  17. D.A. Kessler and H. Levine, Phys. Rev. Lett. 57, 3069 (1986).

    Google Scholar 

  18. J.B. Collins and H. Levine, Phys. Rev. B 31, 6119 (1985); J.S. Langer, in Directions in Condensed Matter, edited by G. Grinstein and G. Mazenko (World Scientific, Singapore, 1986), p. 164; G. Caginalp and P. Fife, Phys. Rev. B 33, 7792 (1986).

    Google Scholar 

  19. R. Kobayashi, Physica D 63, 410 (1993).

    Google Scholar 

  20. J.A. Warren and W.J. Boettinger, Acta Metall. Mater. A 43, 689 (1995).

    Google Scholar 

  21. S.-L. Wang and R.F. Sekerka, Phys. Rev. E 53, 3760 (1996).

    Google Scholar 

  22. A. Karma and W.J. Rappel, Phys. Rev. E 53, R3017 (1996); Phys. Rev. E 57, 4323 (1998).

    Google Scholar 

  23. Y.-T. Kim, N. Provatas, N. Goldenfeld, and J.A. Dantzig, Phys. Rev. E 59, 2549 (1999).

    Google Scholar 

  24. A. Karma and W.-J. Rappel, Phys. Rev. E 60, 3614 (1999).

    Google Scholar 

  25. M. Plapp and A. Karma, Phys. Rev. Lett. 84, 1740 (2000); J. Comp. Phys. 165, 592 (2000).

    Google Scholar 

  26. S.-C. Huang and M.E. Glicksman, Acta Metall. 29, 701 (1981).

    Google Scholar 

  27. M.E. Glicksman and N.B. Singh, J. Cryst. Growth 98, 277 (1989).

    Google Scholar 

  28. M. Muschol, D. Liu, and H.Z. Cummins, Phys. Rev. A 46, 1038 (1992).

    Google Scholar 

  29. R. Trivedi, Interface Science (current issue).

  30. J.J. Hoyt, B. Sadigh, M. Asta, and S.M. Foiles, Acta Mater. 47, 3181 (1999).

    Google Scholar 

  31. J.J. Hoyt, M. Asta, and A. Karma, Phys. Rev. Lett. 86, 5530 (2001).

    Google Scholar 

  32. J.R. Morris, Z.Y. Lu, and K.M. Ho, Interface Science (current issue).

  33. H. Ramalingam, M. Asta, A. van de Walle, and J.J. Hoyt, Interface Science (current issue).

  34. J.Q. Broughton, G.H. Gilmer, and K.A. Jackson, Phys. Rev. Lett. 49, 1496 (1982).

    Google Scholar 

  35. D. Turnbull, Metall. Trans. A 12, 695 (1981).

    Google Scholar 

  36. H.E. Huitema, M.J. Vlot, and J.P. van der Eerden, J. Chem Phys. 111, 4714 (1999).

    Google Scholar 

  37. J.W. Walker, in Principles of Solidification, edited by B. Chalmers (John Wiley and Sons, New York, 1964), p. 114.

    Google Scholar 

  38. R. Willnecker, D.M. Herlach, and B. Feuerbacher, Phys. Rev. Lett. 62, 2707 (1989).

    Google Scholar 

  39. W.H. Hofmeister, R.J. Bayuzick, and M.B. Robinson, Rev. Sci. Instrum. 61, 2220 (1990).

    Google Scholar 

  40. J.W. Lum, D.M. Matson, and M.C. Flemings, Metall. Mater. Trans. B 27, 865 (1996).

    Google Scholar 

  41. D.M. Matson, in Solidification 1998, edited by S.P. Marsh, J.A. Dantzig, R. Trivedi, W. Hofmeister, M.G. Chu, E.J. Lavernia, and J.-H. Chun (The Mineral, Metals and Materials Society, 1998), p. 233.

  42. G. Caginalp and X. Chen, in On the Evolution of Phase Boundaries, edited by M.E. Gurtin and G.B. McFadden, The IMA Volumes in Mathematics and Its Applications (Springer-Verlag, N ew York, 1992), Vol. 43, p. 1.

    Google Scholar 

  43. B.I. Halperin, P.C. Hohenberg, and S.-K. Ma, Phys. Rev. B 10, 139 (1974).

    Google Scholar 

  44. K.R. Elder, F. Drolet, J.M. Kosterlitz, and M. Grant, Phys. Rev. Lett. 72, 677 (1994).

    Google Scholar 

  45. S.G. Pavlik and R.F. Sekerka, Physica A 268, 283 (1999).

    Google Scholar 

  46. J.J. Hoyt (private communication).

  47. E. Ben-Jacob, G. Deutscher, P. Garik, N. Goldenfeld, and Y. Lareah, Phys. Rev. Lett. 57, 1903 (1986).

    Google Scholar 

  48. Y.H. Lee, Ph.D. Thesis, Northeastern University, 1998.

  49. Y.H. Lee, J. Bragard, and A. Karma (to be published).

  50. E. Brener, H. Müller-Krumbhaar, and D. Temkin, Phys. Rev. E 54, 2714 (1996).

    Google Scholar 

  51. T. Abel, E. Brener, and H. Müller-Krumbhaar, Phys. Rev. E 55, 7789 (1997).

    Google Scholar 

  52. A. Karma, Y.H. Lee, and M. Plapp, in Proceedings of the M.C. Flemings Symposium on Solidification and Materials Processing, edited by R. Abbaschian, H. Brody, and A. Mortensen (The Mineral, Metals and Materials Society, 2001), p. 113.

  53. A.M. Mullis and R.F. Cochrane, Acta Mater. 49, 2205 (2001).

    Google Scholar 

  54. M. Ben Amar, Phys. Rev. A 41, 2080 (1990).

    Google Scholar 

  55. G. Horvay, Int. J. Heat Mass. Transfer 8, 195 (1965).

    Google Scholar 

  56. J.L. Walker, in Physical Chemistry of Process Metallurgy (John Willey, New York, 1956).

    Google Scholar 

  57. A. Karma, Int. J. Non-Equil. Process. 11, 201 (1998).

    Google Scholar 

  58. M.J. Aziz, J. Appl. Phys. 53, 1158 (1982).

    Google Scholar 

  59. A. Karma, Int. J. Non-Equil. Process. 11, 201 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bragard, J., Karma, A., Lee, Y.H. et al. Linking Phase-Field and Atomistic Simulations to Model Dendritic Solidification in Highly Undercooled Melts. Interface Science 10, 121–136 (2002). https://doi.org/10.1023/A:1015815928191

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015815928191

Navigation