Skip to main content
Log in

Thermophysical Properties of Containerless Liquid Iron up to 2500 K

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Thermophysical properties of high temperature liquid iron heated with a CO2 laser have been determined in an aerodynamic levitation device equipped with a high-speed camera and a three-wavelength pyrometer. Characteristic curves of the free cooling and heating of the drop can be used to determine the same apparent emissivity of solid and liquid iron and to calibrate pyrometers based on the known value of the melting point of iron, i.e., 1808 K. Examination of the recalescence of undercooled liquid iron and further solidification are used to obtain the ratio of the melting enthalpy versus the heat capacity of liquid iron as \(\frac{{\Delta H_m }}{{c_P^l }} = 306 \pm 2.5{\text{ K}}\). The surface tension σ was determined from an analysis of the vibrations of liquid drops. Results are accurately described by σ (mJ⋅m−2)=(1888±31)−(0.285±0.015) (TT m ) between 1750 K (undercooled liquid) and 2500 K. The density of liquid iron has been deduced from the image size and the mass of the liquid iron drops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. S. Sauerland, Ph.D., Reinisch-Westfälische Technische Hochschule Aachen (1993).

  2. I. Seihan and I. Egry, Int. J. Thermophys. 20:1017 (1999).

    Google Scholar 

  3. R. A. Eichel and I. Egry, Z. Metallkd. 90:371 (1999).

    Google Scholar 

  4. B. J. Keene, K. C. Mills, and R. F. Brooks, Mat. Sci. and Tech. 1:568 (1985).

    Google Scholar 

  5. H. K. Lee, M. G. Frohberg, and J. P Hajra, Steel Research 64:191 (1993).

    Google Scholar 

  6. B. J. Keene, Int. Mat. Rev. 38:157 (1993).

    Google Scholar 

  7. P. C. Nordine and R. M. Atkins, Rev. Sci. Instr. 53:1456 (1982).

    Google Scholar 

  8. W. K. Rhim, S. K. Chung, A. J. Rulinson, and R. E. Spjut, Int. J. Thermophys. 18:459 (1997).

    Google Scholar 

  9. B. Granier and S. Heurtault, Rev. Int. Hautes Tempér. Réfract. Fr. 20:61 (1983).

    Google Scholar 

  10. B. Glorieux, F. Millot, J. C. Rifflet, and J. P. Coutures, Int. J. Thermopys. 20:1085 (1999).

    Google Scholar 

  11. F. Millot, J. C. Rifflet, G. Wille, V. Sarou-Kanian, and B. Glorieux J. Amer. Ceram. Soc 85:187 (2002).

    Google Scholar 

  12. F. Millot, B. Glorieux, and J. C. Rifflet, Prog. Astronaut. And Aeronaut. 185:777 (2000).

    Google Scholar 

  13. S. Krishnan, K. J. Yugawa, and P. C. Nordine, Phys. Rev. B 55:8201 (1997).

    Google Scholar 

  14. L. S. Dubrovinsky and S. K. Saxena, High Temp.-High Press. 31:393 (1999).

    Google Scholar 

  15. E. Kaschnitz, J. L. McClure, and A. Cezairliyan, High Temp.-High Press. 29:103 (1997).

    Google Scholar 

  16. Lord Rayleigh, Proc. Roy. Soc. London 29:71 (1879).

    Google Scholar 

  17. T. Saito, Y. Shiraishi, and Y. Sakuma, Trans. ISIJ 9:118 (1969).

    Google Scholar 

  18. M. Beutl, G. Pottlacher, and H. Jäger, Int. J. Thermophys. 15:1323 (1994).

    Google Scholar 

  19. R. S. Hixson, M. A. Winkler, and M. L. Hodgdon, Phys. Rev. B 42:6485 (1990).

    Google Scholar 

  20. W. D. Drotning, High Temp.-High Press. 13:441 (1981).

    Google Scholar 

  21. C. H. Desch and B. S. Smith, J. Iron Steel Inst. 119:358 (1929).

    Google Scholar 

  22. C. Benedicks, N. Ericsson, and G. Ericson, Arch. Eisenhüttenw. 3:473 (1930).

    Google Scholar 

  23. V. H. Stott and J. H. Rendall, J. Iron Steel Inst. 175:374 (1953).

    Google Scholar 

  24. L. D. Lucas, Compt. Rend. Acad. Sci. 250:1850 (1960).

    Google Scholar 

  25. A. D. Kirshenbaum and J. A. Cahill, Trans. ASM 56:281 (1963).

    Google Scholar 

  26. JANAF Thermochemical Tables, 3rd ed., Vol. 14, Sup. 1 (1985).

  27. D. L. Cummings and D. A. Blackburn, J. Fluid Mech. 224:395 (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wille, G., Millot, F. & Rifflet, J.C. Thermophysical Properties of Containerless Liquid Iron up to 2500 K. International Journal of Thermophysics 23, 1197–1206 (2002). https://doi.org/10.1023/A:1019888119614

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019888119614

Navigation