Skip to main content
Log in

Community structure and function in prokaryotic marine plankton

  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Molecular biodiversity studies of microbial communities have provided invaluable information on the existence of heretofore unknown organisms and on community composition. Cloning and ‘fingerprinting’ techniques have been used many times to study prokaryote community composition of marine plankton. There are still many opportunities for new discoveries in this area, but the results have also opened new questions about the activities of these organisms and their function, going beyond just listing taxa or counting organisms. Rarely can the broad function be inferred from phylogenetic position alone (e.g. cyanobacteria). The recent discovery of abundant non-cyanobacterial marine phototrophs points to our inability to link phylogenetic position with function in a detailed way. One approach we have found fruitful is to combine fluorescence in situ hybridization with microautoradiography, a technique dubbed STARFISH. A recent application has shown that ubiquitous archaea from the deep sea, phylogenetically related to extreme thermophiles, are active in the uptake of amino acids from ambient (nanomolar) concentrations. This suggests the group is at least partly heterotrophic and able to compete successfully with bacteria for nutrients. Other as-yet uncultivated groups are also amenable to similar studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amann RI, Ludwig W & Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59: 143–69.

    PubMed  CAS  Google Scholar 

  • Avaniss Aghajani E, Jones K, Chapman D & Brunk C (1994) A molecular technique for identification of bacteria using small subunit ribosomal Rna sequences. Biotechniques 17: 144–149.

    PubMed  CAS  Google Scholar 

  • Beja O, Aravind L, Koonin EV, Suzuki MT, Hadd A, Nguyen LP, Jovanovich SB, Gates CM, Feldman RA, Spudich JL, Spudich EN & DeLong EF (2000) Bacterial rhodopsin: evidence for a new type of phototrophy in the sea. Science 289: 1902–1906.

    Article  PubMed  CAS  Google Scholar 

  • Beja O, Spudich EN, Spudich JL, Leclerc M & DeLong EF (2001) Proteorhodopsin phototrophy in the ocean. Nature 411: 786–789.

    Article  PubMed  CAS  Google Scholar 

  • Cottrell MT & Kirchman DL (2000) Natural assemblages of marine proteobacteria and members of the cytophaga-flavobacter cluster consuming low-and high-molecular-weight dissolved organic matter. Appl. Environ. Microbiol. 66: 1692–1697.

    Article  PubMed  CAS  Google Scholar 

  • DeLong EF, Taylor LT, Marsh TL & Preston CM (1999) Visualization and enumeration of marine planktonic archaea and bacteria by using polyribonucleotide probes and fluorescent in situ hybridization. Appl. Environ. Microbiol. 65: 5554–5563.

    PubMed  CAS  Google Scholar 

  • Fisher MM & Triplett EW (1999) Automated approach for ribosomal intergenic spacer analysis of microbial diversity and its application to freshwater bacterial communities. Appl. Environ. Microbiol. 65: 4630–4636.

    PubMed  CAS  Google Scholar 

  • Fuhrman JA & Campbell L (1998) Marine ecology - Microbial microdiversity. Nature 393: 410–411.

    Article  CAS  Google Scholar 

  • Fuhrman JA & Davis AA (1997) Widespread Archaea and novel Bacteria from the deep sea as shown by 16S rRNA gene sequences. Mar. Ecol. Prog. Ser. 150: 275–285.

    Google Scholar 

  • Fuhrman JA, McCallum K & Davis AA (1992) Novel major archaebacterial group from marine plankton. Nature 356: 148–149.

    Article  PubMed  CAS  Google Scholar 

  • Fuhrman JA, McCallum K & Davis AA (1993) Phylogenetic diversity of subsurface marine microbial communities from the Atlantic and Pacific Oceans [published erratum appears in Appl Environ Microbiol 1995 Dec;61(12):4517]. Appl. Environ. Microbiol. 59: 1294–1302.

    PubMed  CAS  Google Scholar 

  • Fuhrman JA & Ouverney CC (1998) Marine microbial diversity studied via 16S rRNA sequences: cloning results from coastal waters and counting of native archaea with fluorescent single cell probes. Aquat. Ecol. 32: 3–15.

    Article  CAS  Google Scholar 

  • Garcia-Martinez J, Acinas SG, Anton AI & Rodriguez-Valera F (1999) Use of the 16S-23S ribosomal genes spacer region in studies of prokaryotic diversity. J. Microbiol. Meth. 36: 55–64.

    Article  CAS  Google Scholar 

  • Giovannoni SJ & Rappe M (2000) Evolution, diversity, and molecular ecology of marine prokaryotes. In: Kirchman DL (Ed) Microbial Ecology of the Oceans (pp 47–84). New York, Wiley: 47-84.

    Google Scholar 

  • Gonzalez JM, Kiene RP & Moran MA (1999) Transformation of sulfur compounds by an abundant lineage of marine bacteria in the alpha-subclass of the class Proteobacteria. Appl. Environ. Microbiol. 65: 3810–3819.

    PubMed  CAS  Google Scholar 

  • Gonzalez JM & Moran MA (1997) Numerical dominance of a group of marine bacteria in the alpha-subclass of the class Proteobacteria in coastal seawater. Appl. Environ. Microbiol. 63: 4237–4242.

    PubMed  CAS  Google Scholar 

  • Karner MB, DeLong EF & Karl DM (2001) Archaeal dominance in the mesopelagic zone of the Pacific Ocean. Nature 409: 507–510.

    Article  PubMed  CAS  Google Scholar 

  • Kolber ZS, Plumley FG, Lang AS, Beatty JT, Blankenship RE, Van-Dover CL, Vetriani C, Koblizek M, Rathgeber C & Falkowski PG (2001) Contribution of aerobic photoheterotrophic bacteria to the carbon cycle in the ocean. Science 292: 2492–2495.

    Article  PubMed  CAS  Google Scholar 

  • Kolber ZS, Van Dover CL, Niederman RA & Falkowski PG (2000) Bacterial photosynthesis in surface waters of the open ocean. Nature 407: 177–179.

    Article  PubMed  CAS  Google Scholar 

  • Lee N, Nielsen PH, Andreasen KH, Juretschko S, Nielsen JL, Schleifer KH & Wagner M (1999) Combination of fluorescent in situ hybridization and microautoradiography - a new tool for structure-function analyses in microbial ecology. Appl. Environ. Microbiol. 65: 1289–1297.

    PubMed  CAS  Google Scholar 

  • Moore LR, Rocap G & Chisholm SW (1998) Physiology and molecular phylogeny of coexisting Prochlorococcus ecotypes. Nature 393: 464–467.

    Article  PubMed  CAS  Google Scholar 

  • Mullins TD, Britschgi TB, Krest RL & Giovannoni SJ (1995) Genetic comparisons reveal the same unknown bacterial lineages in Atlantic and Pacific bacterioplankton communities. Limnol. Oceanogr. 40: 148–158.

    Article  CAS  Google Scholar 

  • Muyzer G, Brinkhoff T, Nubel U, Santegoeds C, Schaefer H & Wawer C (1997) Denaturing Gradient Gel Electrophoresis (DGGE) in microbial ecology. In: Akkermans ADL, Elsas JDV & Bruijn FJD (Eds) Molecular Microbial Ecology Manual (pp 1–27). Dordrecht, Kluwer Academic Publishers, The Netherlands.

    Google Scholar 

  • Olsen GJ, Matsuda H, Hagstrom R & Overbeek R (1994) Fastdnaml - a tool for construction of phylogenetic trees of DNA-sequences using maximum-likelihood. Comp. Applic Biosci. 10: 41–48.

    CAS  Google Scholar 

  • Ouverney CC & Fuhrman JA (1999) Combined microautoradiography-16S rRNA probe technique for determination of radioisotope uptake by specific microbial cell types in situ. Appl. Environ. Microbiol. 65: 1746–1752.

    PubMed  CAS  Google Scholar 

  • Ouverney CC & Fuhrman JA (2000) Marine planktonic Archaea take up amino acids. Appl. Environ. Microbiol. 66: 4829–4833, 4822.

    Article  PubMed  CAS  Google Scholar 

  • Pace NR (1997) A molecular view of microbial diversity and the biosphere. Science 276: 734–740.

    Article  PubMed  CAS  Google Scholar 

  • Pinhassi J, Zweifel UL & Hagstrom A (1997) Dominant marine bacterioplankton species found among colony-forming bacteria. Appl. Environ. Microbiol. 63: 3359–3366.

    PubMed  CAS  Google Scholar 

  • Rappe MS, Kemp PF & Giovannoni SJ (1997) Phylogenetic diversity of marine coastal picoplankton 16S rRNA genes cloned from the continental shelf off Cape Hatteras, North Carolina. Limnol. Oceanogr. 42: 811–826.

    Article  CAS  Google Scholar 

  • Schmidt TM, DeLong EF & Pace NR (1991) Analysis of a marine picoplankton community by 16S rRNA gene cloning and sequencing. J. Bacteriol. 173: 4371–4378.

    PubMed  CAS  Google Scholar 

  • Staley JT (1999) Bacterial biodiversity: a time for place. ASM News 65: 681–687.

    Google Scholar 

  • Suzuki MT, Rappe MS, Haimberger ZW, Winfield H, Adair N, Strobel J & Giovannoni SJ (1997) Bacterial diversity among small-subunit rRNA gene clones and cellular isolates from the same seawater sample. Appl. Environ. Microbiol. 63: 983–989.

    PubMed  CAS  Google Scholar 

  • Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, Moore LH, Moore WEC, Murray RGE, Stackebrandt E, Starr MP & Truper HG (1987) Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int. J. Syst. Bacteriol. 37: 463–464.

    Article  Google Scholar 

  • Yurkov VV & Beatty JT (1998) Aerobic anoxygenic phototrophic bacteria. Microbiol. Molec. Biol. Rev. 62: 695.

    CAS  Google Scholar 

  • Zehr JP, Waterbury JB, Turner PJ, Montoya JP, Omoregie E, Steward GF, Hansen A & Karl DM (2001) Unicellular cyanobacteria fix N-2 in the subtropical North Pacific Ocean. Nature 412: 635–638.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fuhrman, J.A. Community structure and function in prokaryotic marine plankton. Antonie Van Leeuwenhoek 81, 521–527 (2002). https://doi.org/10.1023/A:1020513506777

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020513506777

Navigation