Skip to main content

Advertisement

Log in

Decomposition of Phytoplankton in Seawater. Part I: Kinetic Analysis of the Effect of Organic Matter Concentration

  • Published:
Journal of Oceanography Aims and scope Submit manuscript

Abstract

Decomposition experiments were conducted on cultured phytoplankton (Skeletonema costatum) in seawater containing decomposer and consumer of size less than 500 µm. We determined the decomposition rates of bulk particulate organic matter (POM), the ratio of labile to semi-refractory fractions in the POM, and the POM carbon/ nitrogen (C/N) ratio during decomposition. To identify the kinetic mechanisms involved in the reactions of different order (e.g., first- and second-order), we studied the sensitivity of reaction rates to the initial concentration of POM, ranging from 2.4 to 71 mg-C L−1. The results showed that decomposition consists of two first-order reactions: decomposition of labile and of semi-refractory particulate organic carbon (POC). The decomposition rate constants found for labile (0.13 day−1 at 20°C), and semi-refractory POC (0.008 day−1 at 20°C), and the carbon weight ratio of semi-refractory POC (13% at 20°C), were insensitive to the initial organic matter concentration. The time-dependence of the C/N ratio was also independent of this initial concentration. The decomposition rate constants and the content of semi-refractory POC did not change, regardless of the absence or presence of 25–500 µm organisms in natural seawater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andersen, F. Ø. (1996): Fate of organic carbon added as diatom cells to oxic and anoxic marine sediment microcosms. Mar. Ecol. Prog. Ser., 134, 225–233.

    Article  Google Scholar 

  • Arnosti, C. and D. J. Repeta (1994): Oligosaccharide degradation by anaerobic marine bacteria: Characterization of an experimental system to study polymer degradation in sediments. Limnol. Oceanogr., 39, 1865–1877.

    Article  Google Scholar 

  • Berner, R. A. (1980): A rate model for organic matter decomposition during bacterial sulfate reduction in marine sediments. Colloq. Int. CNRS, 293, 35–44.

    Google Scholar 

  • Druffel, E. R. M., P. M. Williams, J. E. Bauer and J. R. Etrel (1992): The long-term cycling of dissolved and particulate organic matter in the open ocean. J. Geophys. Res., 97, 15639–15659.

    Article  Google Scholar 

  • Fabiano, M., R. Danovaro, E. Olivari and C. Misic (1994): Decomposition of faecal matter and somatic tissue of Mytilus galloprovincialis: changes in organic matter composition and microbial succession. Mar. Biol., 119, 375–384.

    Article  Google Scholar 

  • Fallon, R. D. and T. D. Brock (1979): Decomposition of blue-green algal (cyanobacteria) blooms in Lake Mendota, Wisconsin. Appl. Environ. Microbiol., 37, 820–830.

    Google Scholar 

  • Fukami, K., U. Simidu and N. Taga (1985): Microbial decomposition of phyto-and zooplankton in seawater. I. Changes in organic matter. Mar. Ecol. Prog. Ser., 21, 1–5.

    Article  Google Scholar 

  • Fukami, K., B. Meier and J. Overbeck (1991): Vertical and temporal changes in bacterial production and its consumption by heterotrophic nanoflagellates in a north German eutrophic lake. Arch. Hydrobiol., 122, 129–145.

    Google Scholar 

  • Fukami, K., N. Murata, Y. Morio and T. Nishijima (1996): Distribution of heterotrophic nanoflagellates and their importance as the bacterial consumer in a eutrophic coastal seawater. J. Oceanogr., 52, 399–407.

    Article  Google Scholar 

  • Guillard, R. R. L. and Ryther, J. H. (1962): Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt, Detonula confervacea Cleve. Can. J. Microbiol., 8, 229–239.

    Google Scholar 

  • Harvey, H. R. and S. A. Macko (1997): Kinetics of phytoplankton decay during simulated sedimentation: changes in lipids under oxic and anoxic conditions. Org. Geochem., 27, 129–140.

    Article  Google Scholar 

  • Kamatani, A. (1969): Regeneration of inorganic nutrients from diatom decomposition. J. Oceanogr. Soc. Japan, 25, 63–74.

    Article  Google Scholar 

  • Lee, B. G. and N. S. Fisher (1992): Degradation and elemental release rates from phytoplankton debris and their geochemical implications. Limnol. Oceanogr., 37, 1345–1360.

    Article  Google Scholar 

  • Lee, S. and J. A. Fuhrman (1987): Relationships between biovolume and biomass of naturally derived marine bacterioplankton. Appl. Environ. Microbiol., 53, 1298–1303.

    Google Scholar 

  • Matsunaga, K. (1981): Studies on the decompositive processes of phytoplanktonic organic matter. Jap. J. Limnol., 42, 220–229.

    Article  Google Scholar 

  • Nakamura, Y., K. Fukami, S. Sasaki and J. Hiromi (1994): Population dynamics of bacteria and heterotrophic nanoflagellates following the summer diatom bloom in the Seto Inland Sea. Bull. Plankton Soc. Japan, 41, 1–8.

    Google Scholar 

  • Newell, R. C., M. I. Lucas and E. A. S. Linley (1981): Rate of degradation and efficiency of conversion of phytoplankton debris by marine micro-organisms. Mar. Ecol. Prog. Ser., 6, 123–136.

    Article  Google Scholar 

  • Nomura, H. (1995): Long-term variations of environmental parameters in TokyoBay, central Japan. La mer, 33, 107–118 (in Japanese).

    Google Scholar 

  • Osinga, R., K. A. de Vries, W. E. Lewis, W. van Raaphorst, L. Dijkhuizen and F. C. van Duyl (1997): Aerobic degradation of phytoplankton debris dominated by Phaeocystis sp. in different physiological stages of growth. Mar. Ecol. Prog. Ser., 12, 11–19.

    Google Scholar 

  • Otsuki, A. and T. Hanya (1972): Production of dissolved organic matter from dead green algal cells. I. Aerobic microbial decomposition. Limnol. Oceanogr., 17, 248–257.

    Article  Google Scholar 

  • Pellikaan, G. C. (1984): Laboratory experiments on eelgrass (Zostera marina L.) decomposition. Netherlands J. of Sea Res., 18, 360–383.

    Article  Google Scholar 

  • Pett, R. J. (1989): Kinetics of microbial mineralization of organic carbon from detrital Skeletonema costatum cells. Mar. Ecol. Prog. Ser., 52, 123–128.

    Article  Google Scholar 

  • Porter, K. G. and Y. S. Feig (1980): The use of DAPI for identifying and counting aquatic microflora. Limnol. Oceanogr., 25, 943–948.

    Article  Google Scholar 

  • Sanders, R. W., D. A. Caron and U. G. Berninger (1992): Relationship between bacteria and heterotrophic nanoplankton in marine and fresh waters: an inter-ecosystem comparison. Mar. Ecol. Prog. Ser., 86, 1–14.

    Article  Google Scholar 

  • Suzuki, Y., E. Tanoue and H. Ito (1992): A high-temperature catalytic oxidation method for the determination of dissolved organic carbon in seawater: analysis and improvement. Deep-Sea Res., 39, 185–198.

    Article  Google Scholar 

  • Thompson, P. A., M. Guo and P. J. Harrison (1992): Effects of variation in temperature. I. On the biochemical composition of eight species of marine phytoplankton. J. Phycol., 28, 481–488.

    Article  Google Scholar 

  • Verity, P. G., S. C. Williams and Y. Hong (2000): Formation, degradation, and mass: volume ratios of detritus derived from decaying phytoplankton. Mar. Ecol. Prog. Ser., 207, 53–68.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fujii, M., Murashige, S., Ohnishi, Y. et al. Decomposition of Phytoplankton in Seawater. Part I: Kinetic Analysis of the Effect of Organic Matter Concentration. Journal of Oceanography 58, 433–438 (2002). https://doi.org/10.1023/A:1021296713132

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021296713132

Navigation