Skip to main content
Log in

Effects of filamentous algae and deposited matter on the survival of Fucus vesiculosus L. germlings in the Baltic Sea

  • Published:
Aquatic Ecology Aims and scope Submit manuscript

Abstract

As a result of increased nutrient levels in the Baltic Sea during thepast 50 years, mass developments of filamentous algae have become a commonfeature along the Swedish east coast and deposition of organic matter has alsoincreased. To test whether these two factors have any effects on the early lifestages of Fucus vesiculosus a number of laboratory andfield studies were conducted. The amount of epilithic and epiphytic filamentousalgae on F. vesiculosus and the amount of deposited matterin the littoral zone were quantified during the two reproductive periods ofF. vesiculosus, early summer (May–June) and lateautumn (September–October). Both filamentous algae (Cladophoraglomerata) and deposited matter (introduced either before or aftersettlement of fertilized eggs) were shown to significantly decrease the numberof surviving germlings. The survival of germlings seeded on stones withfilamentous algae, or seeded on culture dishes concurrently with the lowestconcentration of deposited matter (0.1 g dm−2),was 5% or less. In the field, the amount of filamentous algae was significantlyhigher during F. vesiculosus summer reproduction, whereasthe amount of deposited matter collected in traps was significantly higherduring the period of autumn reproduction. The greatest biomass of filamentousalgae was observed at sheltered sites. Based on the negative effects offilamentous algae and deposited matter on Fucusrecruitmentand the observation of local and seasonal differences in abundance offilamentous algae and deposition, we suggest that the prerequisites for thesurvival of either summer or autumn-reproducing populations of F.vesiculosus in the Baltic Sea may differ locally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andersson S., Kautsky L. and Kautsky N. 1992. Effects of salinity and bromine on zygotes and embryos of Fucus vesiculosus from the Baltic Sea. Mar. Biol. 114: 661-665.

    Google Scholar 

  • Andersson S., Kautsky L. and Kalvas A. 1994. Circadian and lunar gamete release in Fucus vesiculosus in the atidal Baltic Sea. Mar. Ecol. Prog. Ser. 110: 195-201.

    Google Scholar 

  • Andersson S. and Kautsky L. 1996. Copper effects on reproductive stages of Baltic Sea Fucus vesiculosus L. Mar. Biol. 125: 171-176.

    Google Scholar 

  • Bäck S., Collins J.C. and Russell G. 1991. Aspects of the reproductive biology of Fucus vesiculosus from the coast of SW Finland. Ophelia 34: 129-141.

    Google Scholar 

  • Bäck S. and Ruuskanen A. 2000. Distribution and maximum growth depth of Fucus vesiculosus along the Gulf of Finland. Mar. Biol. 136: 303-307.

    Google Scholar 

  • Berger R., Malm T. and Kautsky L. 2001. Two reproductive strategies in Baltic Fucus vesiculosus (Phaeophyceae). Eur. J. Phycol. 36: 265-273.

    Google Scholar 

  • Bergström L., Berger R. and Kautsky L. 2002. Negative direct effects of nutrient enrichment on the establishment of Fucus vesiculosus L. in the Baltic Sea. Eur. J. Phycol. (in press).

  • Bergström L. and Bergström U. 1999. Species diversity and distribution of aquatic macrophytes in the Northern Quark, Baltic Sea. Nord. J. Bot. 19: 375-383.

    Google Scholar 

  • Brawley S.H. and Johnson L.E. 1991. Survival of fucoid embryos in the intertidal zone depends upon developmental stage and microhabitat. J. Phycol. 27: 179-186.

    Google Scholar 

  • Carlsson L. 1991. Seasonal variation in growth, reproduction and nitrogen content of Fucus vesiculosus L. in the Öresund, southern Sweden. Bot. Mar. 34: 447-453.

    Google Scholar 

  • Creed J.C., Norton T.A. and Kain (Jones) J.M. 1996. Are neighbours harmful or helpful in Fucus vesiculosus populations? Mar. Ecol. Prog. Ser. 133: 191-201.

    Google Scholar 

  • Devinny J.S. and Volse L.A. 1978. Effects of sediments on the development of Macrocystis pyrifera gametophytes. Mar. Biol. 48: 343-348.

    Google Scholar 

  • Engkvist R., Malm T. and Tobiasson S. 2000. Density dependent grazing effects of the isopod Idotea baltica Pallas on Fucus vesiculosus L. in the Baltic Sea. Aqua. Ecol. 34: 253-260.

    Google Scholar 

  • Eriksson B.K., Johansson G. and Snoeijs P. 1998. Long-term changes in the sublittoral zonation of brown algae in the southern Bothnian Sea. Eur. J. Phycol. 33: 241-249.

    Google Scholar 

  • Haage P. and Jansson B.-O. 1970. Quantitative investigations of the Baltic Fucus belt macrofauna. 1. Quantitative methods. Ophelia 8: 187-195.

    Google Scholar 

  • Haahtela I. 1984. A hypothesis of the decline of the Bladder Wrack (Fucus vesiculosus L.) in the SW Finland in 1975-1981. Limnologica (Berlin) 15: 345-350.

    Google Scholar 

  • Hajdu S., Larsson U. and Skärlund K. 1997. Phytoplankton. In: Elmgren R. and Larsson U. (eds), Himmerfjärden. Changes in a nutrient enriched coastal ecosystem. Vol. 4565. Rapport/Naturvårdsverket, Gotab, Stockholm, pp. 63-79.

  • Hällfors G., Kangas P. and Niemi Å. 1984. Recent changes in the phytal at the south coast of Finland. Ophelia 3: 51-59.

    Google Scholar 

  • Heiskanen A.-S. and Leppänen J.-M. 1995. Estimation of export production in the coastal Baltic Sea: effect of resuspension and microbial decomposition on sedimentation measurements. Hydrobiologia 316: 211-224.

    Google Scholar 

  • Heiskanen A.-S. and Tallberg P. 1999. Sedimentation and particulate nutrient dynamics along a coastal gradient from a fjordlike bay to the open sea. Hydrobiologia 393: 127-140.

    Google Scholar 

  • Juhlin B. 1992. Twenty years of measurements along the Swedish coast (1970-1990). SMHI Oceanography Norrköping Sweden 54: 1-67.

    Google Scholar 

  • Kangas P., Autio H., Hällfors G., Luther H., Niemi Å. and Salemaa H. 1982. A general model of the decline of Fucus vesiculosus at Tvärminne, south coast of Finland in 1977-81. Acta. Bot. Fennica. 118: 1-27.

    Google Scholar 

  • Kautsky H. 1989. Quantitative distribution of plant and animal communities of the phytobenthic zone in the Baltic Sea. Contributions from the Askö Laboratory, University of Stockholm, Sweden. No. 35.

    Google Scholar 

  • Kautsky H. 1991. Influence of eutrophication on the distribution of phytobenthic plant and animal communities. Int. Revue Ges. Hydrobiol. 76: 423-432.

    Google Scholar 

  • Kautsky H. 1992. The impact of pulp-mill effluents on phytobenthic communities in the Baltic Sea. Ambio 21: 308-313.

    Google Scholar 

  • Kautsky N. and Evans S. 1987. Role of biodeposition by Mytilus edulis in the circulation of matter and nutrients in a Baltic coastal ecosystem. Mar. Ecol. Prog. Ser. 38: 201-212.

    Google Scholar 

  • Kautsky N., Kautsky H., Kautsky U. and Waern M. 1986. Decreased depth penetration of Fucus vesiculosus (L.) since the 1940's indicates eutrophication of the Baltic Sea. Mar. Ecol. Prog. Ser. 28: 1-8.

    Google Scholar 

  • Kiirikki M. 1996. Experimental evidence that Fucus vesiculosus (Phaeophyta) controls filamentous algae by means of the whiplash effect. Eur. J. Phycol. 31: 61-66.

    Google Scholar 

  • Knight M. and Parke M. 1950. A biological study of Fucus vesiculosus L. and Fucus serratus L. J. Mar. Biol. Assoc. UK 29: 439-501.

    Google Scholar 

  • Lotze H.K., Worm B. and Sommer U. 2000. Propagule banks, herbivory and nutrient supply control population development and dominance patterns in macroalgal blooms. Oikos 89: 46-58.

    Google Scholar 

  • Lund-Hansen L.C., Petersson M. and Nurjaya W. 1997. Sediment fluxes, re-suspension and accumulation rates at two wind exposed coastal sites and in a sheltered bay. Estuarine, Coastal and Shelf Science 44: 521-531.

    Google Scholar 

  • Malm T., Engkvist R. and Kautsky L. 1999. Grazing effects of two freshwater snails on juvenile Fucus vesiculosus in the Baltic Sea. Mar. Ecol. Prog. Ser. 188: 63-71.

    Google Scholar 

  • Malm T., Kautsky L. and Enkvist R. 2001. Reproduction, recruitment and geographical distribution of Fucus serratus L. in the Baltic Sea. Bot. Mar. 44: 101-108.

    Google Scholar 

  • Mattsson B. 1999. Salinity effects on different life cycle stages in Baltic and North Sea Fucus vesiculosus L. Ph Lic, Stockholm University, Stockholm, Sweden.

    Google Scholar 

  • Moss B., Mercer S. and Sheader A. 1973. Factors affecting the distribution of Himanthalia elongata (L.) S.F. Gray on the northeast coast of England. Estuarine and Coastal Marine Science 1: 233-243.

    Google Scholar 

  • Rosemarin A., Mattsson J., Lehtinen K.-J., Notini M. and Nylén E. 1986. Effects of pulp mill chlorate (ClO3) on Fucus vesiculosus - a summary of projects. Ophelia 4: 219-224.

    Google Scholar 

  • Salemaa H. 1979. Ecology of Idothea spp. (Isopoda) in the northern Baltic. Ophelia 18: 133-150.

    Google Scholar 

  • Santelices B. 1990. Patterns of reproduction, dispersal and recruitment in seaweeds. Oceangr. Mar. Biol. Annu. Rev. 28: 177-276.

    Google Scholar 

  • Schramm W. 1996. The Baltic Sea and its Transition Zones. In: Nienhuis (ed.), Marine Bentic Vegetation. Springer-Verlag, Berlin, Germany.

    Google Scholar 

  • Serrão E.A. 1996. Reproductive ecology of Fucus vesiculosus L. in the Baltic Sea. PhD Dissertation, University of Maine, Orono, USA.

    Google Scholar 

  • Serrão E.A., Kautsky L., Lifvergren T. and Brawley S.H. 1996. Gamete dispersal and pre-recruitment mortality in Baltic Fucus vesiculosus. Phycologia Suppl 36: 101-102.

    Google Scholar 

  • Smetacek V. 1980. Annual sedimentation in relation to phytoplankton ecology in western Kiel Bight. Ophelia 1: 65-76.

    Google Scholar 

  • Sokal R.R. and Rohlf F.J. 2000. Biometry: the Principles and Practice of Statistics in Biological Research. 3rd edn. WH Freeman and Company, New York, NY, USA.

    Google Scholar 

  • Vadas R.L., Johnson S. and Norton T.A. 1992. Recruitment and mortality of early post-settlement stages of benthic algae. Br. Phycol. J. 27: 331-351.

    Google Scholar 

  • Vahteri P., Mäkinen A., Salovius S. and Vuorinen I. 2000. Are drifting algal mats conquering the bottom of the Archipelago Sea, SW Finland? Ambio 29: 338-343.

    Google Scholar 

  • Viitasalo M., Rosenberg M., Heiskanen A.-S. and Kosi M. 1999. Sedimentation of copepod fecal material in the coastal northern Baltic Sea: Where did all the pellets go? Limnol. Oceanogr. 44: 1388-1399.

    Google Scholar 

  • Vogt H. and Schramm W. 1991. Conspicuous decline of Fucus in Kiel Bay (western Baltic): what are the causes? Mar. Ecol. Prog. Ser. 69: 189-194.

    Google Scholar 

  • Voss M. 1991. Content of copepod faecal pellets in relation to food supply in Kiel Bight and its effect on sedimentation rate. Mar. Ecol. Prog. Ser. 75: 217-225.

    Google Scholar 

  • Wassmann P. 1984. Sedimentation and benthic mineralization of organic detritus in a Norwegian fjord. Mar. Biol. 83: 83-94.

    Google Scholar 

  • Wikström S., Kautsky L. and Malm T. 2000. The effects of chlorine-free pulp mill effluents on reproduction and grazing interactions in Baltic Sea Fucus vesiculosus L. Ophelia 53: 173-179.

    Google Scholar 

  • Worm B. and Chapman A.R.O. 1996. Interference competition among two intertidal seaweeds: Chondrusitcrispus strongly affects survival of Fucus evanescens recruits. Mar. Ecol. Prog. Ser. 145: 297-301.

    Google Scholar 

  • Worm B., Lotze H.K., Boström C., Engkvist R., Labanauskas V. and Sommer U. 1999. Marine diversity shift linked to interactions among grazers, nutrients and propagule banks. Mar. Ecol. Prog. Ser. 185: 309-314.

    Google Scholar 

  • Worm B., Lotze H.K. and Sommer U. 2000. Coastal food web structure, carbon storage, and nitrogen retention regulated by consumer pressure and nutrient loading. Limnol. Oceanogr. 45: 339-349.

    Google Scholar 

  • Worm B., Lotze H.K. and Sommer U. 2001. Algal propagule banks modify competition, consumer and resource control on Baltic rocky shores. Oecologia 128: 281-293.

    Google Scholar 

  • Worm B. and Sommer U. 2000. Rapid direct and indirect effects of a single nutrient pulse in a seaweed-epiphyte-grazer system. Mar. Ecol. Prog. Ser. 202: 283-288.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rita Berger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berger, R., Henriksson, E., Kautsky, L. et al. Effects of filamentous algae and deposited matter on the survival of Fucus vesiculosus L. germlings in the Baltic Sea. Aquatic Ecology 37, 1–11 (2003). https://doi.org/10.1023/A:1022136900630

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022136900630

Navigation