Skip to main content
Log in

Control Volume Method for the Dynamo Problem in the Sphere with the Free Rotating Inner Core

  • Published:
Studia Geophysica et Geodaetica Aims and scope Submit manuscript

Abstract

A model of thermally driven dynamo in the Boussinesq approximation in the spherical shell with the free rotating inner core is considered. To solve equations we use a new in dynamo modeling control volume technique (for details of this method for hydrodynamics see Patankar, 1980). The main advantage of this method over previous attempts to solve magnetohydrodynamics equations in the spherical grids is that no filtering of high harmonics in the pole regions is needed. We present the results of simulations for the self-consistent dynamo system evolution over the diffusion time and longer periods. Different ways of stabilizations of magnetohydrodynamics equations, when convective terms are of the same order (or larger) as conductive ones, are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anufriev A.P., Cupal I. and Hejda P., 1995. The weak Taylor state in ??-dynamo. Geophys. Astrophys. Fluid. Dynam., 79, 125-145.

    Article  Google Scholar 

  • Anufriev A.P. and Hejda P., 1998a. Effect of the magneic field at the inner core boundary on the flow in the Earth's core. Phys. Earth Planet. Inter., 106, 19-30.

    Article  Google Scholar 

  • Anufriev A.P. and Hejda P., 1998b. The influence of a homogeneous magnetic field on the Ekman and Stewartson layers. Stud. Geophys. Geod., 42, 254-260.

    Article  Google Scholar 

  • Aurnou J.M., Brito D. and Olson P.L., 1996. Mechanics of inner core super-rotation. Geophys., Res., 23, 3401-3407.

    Google Scholar 

  • Braginsky S.I., 1976. On nearly axially-symmetrical model of the hydromagnetic dynamo of the Earth. Phys. Earth Planet. Inter., 11, 191-199.

    Article  Google Scholar 

  • Braginsky S.I. and Roberts P.H., 1987. A model-Z geodynamo. Geophys. Astrophys. Fluid. Dynam., 38, 327-349.

    Article  Google Scholar 

  • Christensen U.R., Aubert J., Cardin P., Dormy E., Gibbons S., Glatzmaier G.A., Grote E., Honkura Y., Jones C., Kono M., Matsushima M., Sakuraba A., Takahashi F., Tilgner A., Wicht J., and Zhang K., 2001. A numerical dynamo benchmark. Phys. Earth Planet. Inter. 128, 25-34.

    Article  Google Scholar 

  • Evans C.R. and Hawley J.F., 1988. Simulation of hydrodynamic flows: A constrained transport method. Astrophys. J., 332, 659-677.

    Article  Google Scholar 

  • Fletcher C.A., 1988. Computational Techniques for Fluid Dynamics. Springer-Verlag, Berlin.

    Book  Google Scholar 

  • Gilman P.A. and Miller J., 1981. Dynamical consistent nonlinear dynamos dryven by convection in a rotating shell. Astrophys. J. Suppl., 46, 211-238.

    Article  Google Scholar 

  • Glatzmaier G.A. and Roberts P.H., 1995a. A three-dimension self-consistent computer simulation of a geomagnetic field reversal. Nature, 377, 203-209.

    Google Scholar 

  • Glatzmaier G.A. and Roberts P.H., 1995b. A three-dimension convective dynamo solution with rotating and finitely conducting inner core and mantle. Phys. Earth Planet. Inter., 91, 63-75.

    Article  Google Scholar 

  • Glatzmaier G.A. and Roberts P.H., 1996. An anelastic evolutionary geodynamo simulation driven by compositional and thermal convection. Physica D, 97, 81-94.

    Article  Google Scholar 

  • Hejda P. and Reshetnyak M., 2000. The grid-spectral approach to 3-D geodynamo modelling. Computers and Geosciences, 26, 167-175.

    Article  Google Scholar 

  • Hejda P., Cupal I. and Reshetnyak M., 2001. On the application of grid-spectral method to the solution of geodynamo eqution. In: P. Chossat, D. Armbruster and I. Oprea (Eds.), Dynamo and Dynamics, a Mathematical Challenge, Nato Sci. Ser., II/26, Kluwer Acad. Publ., 181-187.

  • Jones C.A., 2000. Convection-driven geodynamo models. Phil.Trans. R. Soc., A358, 873-897.

    Google Scholar 

  • Kageyama A., Watanabe K. and Sato T., 1993. Simulation study of a magnetohydrodynamic dynamo: Convection in a rotating spherical shell. Phys. Fluids, B5, 2793-2805.

    Google Scholar 

  • Kuang W. and Bloxham J., 1997. An Earth-like numerical dynamo model. Nature, 389, 371-374.

    Article  Google Scholar 

  • Nakajima T. and Roberts P.H., 1995. An application of mapping method to asymmetric kinematic dynamos. Phys. Earth Planet. Inter., 91, 53-61.

    Article  Google Scholar 

  • Patankar S.V., 1980. Numerical Heat Transfer And Fluid Flow. Taylor and Francis, Philadelphia, London.

    Google Scholar 

  • Roberts P.H., 1968. On the thermal instability of a rotating-fluid sphere containing heat sources. Phil. Trans. R. Soc., A263, 93-117.

    Google Scholar 

  • Tilgner A. and Busse F.H., 1997. Finite amplitude in rotating spherical fluid shells. J. Fluid. Mech., 332, 359-376.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hejda, P., Reshetnyak, M. Control Volume Method for the Dynamo Problem in the Sphere with the Free Rotating Inner Core. Studia Geophysica et Geodaetica 47, 147–159 (2003). https://doi.org/10.1023/A:1022207823737

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022207823737

Navigation