Skip to main content
Log in

Numerical modeling of size effects with gradient elasticity - Formulation, meshless discretization and examples

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

A theory of gradient elasticity is used and numerically implemented by a meshless method to model size effects. Two different formulations of this model are considered, whereby the higher-order gradients are incorporated explicitly and implicitly, respectively. It turns out that the explicit gradient dependence leads to a straightforward spatial discretization, while use of the implicit gradient dependence can result in an awkward form of the stiffness matrix. For the numerical analyses the Element-Free Galerkin method has been used, due to its ability to incorporate higher-order gradients in a straightforward manner. Two boundary value problems have been considered, which show the capability of the gradient elasticity theory to capture size effects. In a follow-up paper, the formulation developed herein will be used to analyze additional configurations with attention to comparison with available experimental data on size effects and verification of available scaling laws for structural components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aifantis, E.C. (1996). ‘Higher order gradients and size effects’. In: A. Carpinteri (ed.): Size-scale effects in the failure mechanisms of materials and structures. London, pp. 231–242.

  • Aifantis, E.C. (1999a). ‘Gradient deformation models at nano, micro, and macro scales’. ASME Journal of Engineering Materials and Technology 121, 189–202.

    Google Scholar 

  • Aifantis, E.C. (1999b). ‘Strain gradient interpretation of size effects’. International Journal of Fracture 95, 299–314.

    Google Scholar 

  • Altan, B.S. and Aifantis, E.C. (1997). ‘On some aspects in the special theory of gradient elasticity’. Journal of the Mechanical Behavior of Materials 8, 231–282.

    Google Scholar 

  • Altan, S.B. and Aifantis, E.C. (1992). ‘On the structure of the mode III crack-tip in gradient elasticity’. Scripta Metallurgica et Materialia 26, 319–324.

    Google Scholar 

  • Amanatidou, E. and Avras, N. (2002). ‘Mixed finite element formulation of strain-gradient elasticity problems’. Computer Methods in Applied Mechanics and Engineering 191, 1723–1751.

    Google Scholar 

  • Askes, H. (2000). ‘Advanced spatial discretisation strategies for localised failure – mesh adaptivity and meshless methods’. Dissertation, Delft University of Technology.

  • Askes, H. and Metrikine, A.V. (2002). ‘One-dimensional dynamically consistent gradient elasticity models derived from a discrete microstructure. Part 2: Static and dynamic response’. European Journal of Mechanics A/Solids, 21,573–588.

    Google Scholar 

  • Askes, H., Pamin, J. and de Borst R. (2000). ‘Dispersion analysis and Element-Free Galerkin solutions of second and fourth-order gradient-enhanced damage models’. International Journal for Numerical Methods in Engineering 49, 811–832.

    Google Scholar 

  • Askes, H., Suiker, A.S.J. and Sluys, L.J. (2001a). ‘Dispersion analysis and numerical simulations of second-order and fourth-order strain gradient models based on a microstructure’. In: Z. Waszczyszyn and J. Pamin (eds.), European Conference on Computational Mechanics.

  • Askes, H., Suiker, A.S.J. and Sluys, L.J. (2001b). ‘Dispersion analysis and numerical simulations of wave propagation in homogenised granular media’. In: W. Wall, K.-U. Bletzinger, and K. Schweizerhof (eds.), Trends in Computational Structural Mechanics. pp. 59–68.

  • Askes, H., Suiker, A.S.J. and Sluys, L.J. (2002). ‘A classification of higher-order strain gradient models–linear analysis’. Archive of Applied Mechanics, 72,171–188.

    Google Scholar 

  • Bažant, Z.P. (1984). ‘Size effect in blunt fracture: concrete, rock, metal’. ASCE Journal of Engineering Mechanics 110, 518–535.

    Google Scholar 

  • Bažant, Z.P. (2000). ‘Size effect’. International Journal of Solids and Structures 37, 69–80.

    Google Scholar 

  • Belytschko, T., Krongauz, Y., Organ, D., Fleming, M. and Krysl, P. (1996). ‘Meshless Methods: an overview and recent developments’. Computer Methods in Applied Mechanics and Engineering 139, 3–47.

    Google Scholar 

  • Belytschko, T., Lu, Y.Y. and Gu, L. (1994). ‘Element-free Galerkin methods’. International Journal for Numerical Methods in Engineering 37, 229–256.

    Google Scholar 

  • Carpinteri, A. (ed.) (1996). Size-scale effects in the failure mechanisms of materials and structures. London, E. & F.N. Spon.

    Google Scholar 

  • Carpinteri, A., Chiaia, B. and Ferro, G. (1995). ‘Multifractal sealing law: an extensive application to nominal strength size effect of concrete structures’. Technical Report 51, Politecnico di Torino, Dipartimento di Ingegneria Strutturale.

  • de Borst, R. and Mühlhaus, H.-B. (1992). ‘Gradient-dependent plasticity: formulation and algorithmic aspects’. International Journal for Numerical Methods in Engineering 35, 521–539.

    Google Scholar 

  • Efremidis, G., Carpinteri, A. and Aifantis, E.C. (2001a). ‘Griffith's theory versus gradient elasticity in the evaluation of porous materials tensile strength’. Journal of the Mechanical Behavior of Materials 12, 95–105.

    Google Scholar 

  • Efremidis, G., Carpinteri, A. and Aifantis, E.C. (2001b). ‘Multifractal sealing law versus gradient elasticity in the evaluation of disordered materials compresive strength’. Journal of the Mechanical Behavior of Materials 12, 107–120.

    Google Scholar 

  • Fleck, N.A., Muller, G.M., Ashby, M.F. and Hutchinson, J.W. (1994). ‘Strain gradient plasticity: theory and experiment’. Acta Metallurgica et Materialia 42, 475–487.

    Google Scholar 

  • Gere, J.M and Timoshenko, S.P. (1991). Mechanics of Materials. London: Chapman & Hall, third edition.

    Google Scholar 

  • Lakes, R.S. (1983). ‘Size effects and micromechanics of a porous solid’. Journal of Materials Science 18, 2572–2580.

    Google Scholar 

  • Lakes, R.S. (1986). ‘Experimental microelasticity of two porous solids’. International Journal of Solids and Structures 22, 55–63.

    Google Scholar 

  • Lu, Y.Y, Belytschko, T. and Gu, L. (1994). ‘A new implementation of the element free Galerkin method’. Computer Methods in Applied Mechanics and Engineering 113, 397–414.

    Google Scholar 

  • Metrikine, A.V. and Askes, H. (2002). ‘One-dimensional dynamically consistent gradient elasticity models derived from a discrete microstructure. Part 1: Generic formulation’. European Journal of Mechanics A/Solids, 21,555–572.

    Google Scholar 

  • Morrison, J.L.M. (1939). ‘The yield of mild steel with particular reference to the effect of size of specimen’. Proceedings of the Institute of Mechanical Engineers 142, 193–223.

    Google Scholar 

  • Mûhlhaus, H.-B. and Aifantis, E.C. (1991). ‘A variational principle for gradient plasticity’. International Journal of Solids and Structures 28, 845–857.

    Google Scholar 

  • Pamin, J. (1994). ‘Gradient-dependent plasticity in numerical simulation of localization phenomena’. Dissertation, Delft University of Technology.

  • Pamin, J., Askes, H. and de Borst, R. (1999). ‘An element-tree Galerkin method for gradient plasticity’. In: W. Wunderlich (ed.): European Conference on Computational Mechanics – Solids, Structures and Coupled Problems in engineering.

  • Peerlings, R.H.J. (1999). ‘Enhanced damage modelling for fracture and fatigue’. Dissertation, Eindhoven University of Technology.

  • Peerlings, R.H.J., de Borst, R., Brekelmans, W.A.M. and de Vree, J.H.P. (1996a). ‘Gradient enhanced damage for quasi-brittle materials’. International Journal for Numerical Methods in Engineering 39, 3391–3403.

    Google Scholar 

  • Peerlings, R.H.J., de Borst, R., Brekelmans, W.A.M., de Vree, J.H.P. and Spee, I. (1996b). ‘Some observations on localisation in non-local and gradient damage models’. European Journal of Mechanics A/Solids 15, 937–953.

    Google Scholar 

  • Peerlings, R.H.J., de Borst, R., Brekelmans, W.A.M. and Geers, M.G.D. (1998). ‘Gradient-enhanced damage modelling of concrete fracture’. Mechanics of Cohesive-Frictional Materials 3, 323–342.

    Google Scholar 

  • Pijaudier-Cabot, G. and Bažant, Z.P. (1987). ‘Nonlocal damage theory’. ASCE Journal of Engineering Mechanics 113, 1512–1533.

    Google Scholar 

  • Richards, C.W. (1958). ‘Effect of size on the yielding of mild steel beams’. Proceedings of the American Society for Testing and Materials 58, 955–970.

    Google Scholar 

  • Ru, C.Q. and Aifantis, E.C. (1993). ‘A simple approach to solve boundary-value problems in gradient elasticity’. Acta Mechanica 101, 59–68.

    Google Scholar 

  • van Vliet, M.R.A. (2000). ‘Size effect in tensile fracture of concrete and rock’. Dissertation, Delft University of Technology.

  • Vardoulakis, I. and Sulem, J. (1995). Bifurcation analysis in geomechanics. London: Blackie Academic and Professional.

    Google Scholar 

  • Zhu, H.T., Zbib, H.M. and Aifantis, E.C. (1997). ‘Strain gradients and continuum modeling of size effect in metal matrix composites’. Acta Mechanica 121, 165–176.

    Google Scholar 

  • Zienkiewicz, O.C. and Taylor, R.L. (1989). The finite element method – volume I. Berkshire:McGraw-Hill, fourth edition.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Askes, H., Aifantis, E.C. Numerical modeling of size effects with gradient elasticity - Formulation, meshless discretization and examples. International Journal of Fracture 117, 347–358 (2002). https://doi.org/10.1023/A:1022225526483

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022225526483

Navigation