Skip to main content
Log in

The Information Conveyed by Words in Sentences

  • Published:
Journal of Psycholinguistic Research Aims and scope Submit manuscript

Abstract

A method is presented for calculating the amount of information conveyed to a hearer by a speaker emitting a sentence generated by a probabilistic grammar known to both parties. The method applies the work of Grenander (1967) to the intermediate states of a top-down parser. This allows the uncertainty about structural ambiguity to be calculated at each point in a sentence. Subtracting these values at successive points gives the information conveyed by a word in a sentence. Word-by-word information conveyed is calculated for several small probabilistic grammars, and it is suggested that the number of bits conveyed per word is a determinant of reading times and other measures of cognitive load.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bever, T. G. (1970). The cognitive basis for linguistic structures. In J. Hayes (Ed.), Cognition and the development of language (pp. 279-362). New York: Wiley.

    Google Scholar 

  • Billot, S., & Lang, B. (1989). The structure of shared forests in ambiguous parsing. In Proceedings of the 1989 Meeting of the Association for Computational Linguistics. Vancouver.

  • Charniak, E. (1993). Statistical language learning. MIT Press.

  • Charniak, E., & Goldman, R. P. (1993). A bayesian model of plan recognition. Artificial Intelligence, 64, 53-79.

    Google Scholar 

  • Chomsky, N. (1956). Three models for the description of language. IRE Transactions on Information Theory, 2, 113-124.

    Google Scholar 

  • Chomsky, N. (1965). Aspects of the theory of syntax. Cambridge MA: MIT Press.

    Google Scholar 

  • Cover, T. M., & Thomas, J. A. (1991). Elements of information theory. John Wiley and Sons.

  • Crain, S., & Fodor, J. D. (1985). How can grammars help parsers? In D. R. Dowty, L. Karttunen, & A. M. Zwicky (Eds.), Natural language parsing: Psychological, computational and theoretical perspectives (pp. 94-127). Cambridge: Cambridge University Press.

    Google Scholar 

  • Den, Y., & Inoue, M. (1997). Disambiguation with verb-predictability: Evidence from Japanese garden-path phenomena. In Proceedings of the Nineteenth Annual Conference of the Cognitive Science Society (pp. 179-184). Lawrence Erlbaum.

  • Ellis, C. A. (1969). Probabilistic languages and automata. Unpublished doctoral dissertation, University of Illinois, Urbana.

    Google Scholar 

  • Elman, J. (1990). Finding structure in time. Cognitive Science, 14, 179-211.

    Google Scholar 

  • Feldman, J. A., & Ballard, D. H. (1982). Connectionist models and their properties. Cognitive Science, 6, 205-254.

    Google Scholar 

  • Frazier, L., & Clifton, C., Jr. (1996). Construal. Cambridge, MA: MIT Press.

    Google Scholar 

  • Garnsey, S. M., Pearlmutter, N. J., Myers, E., & Lotocky, M. A. (1997). The contributions of verb bias and plausibility to the comprehension of temporarily ambiguous sentences. Journal of Memory and Language, 37, 58-93.

    Google Scholar 

  • Gazdar, G., Klein, E., Pullum, G., & Sag, I. (1985). Generalized phrase structure grammar. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Gibson, E. (1991). A computational theory of human linguistic processing: Memory limitations and processing breakdown. Unpublished doctoral dissertation, Pittsburgh, PA: Carnegie Mellon University.

    Google Scholar 

  • Gibson, E. (1998). Linguistic complexity: Locality of syntactic dependencies. Cognition, 68, 1-76.

    Google Scholar 

  • Gibson, E. (2000). The dependency locality theory: A distance-based theory of linguistic complexity. In Y. Miyashita, A. Marantz, & W. O'Neil (Ed.), Image, language, brain. Cambridge, Massachusetts: MIT Press.

    Google Scholar 

  • Gibson, E., & Pearlmutter, N. J. (1998). Constraints on sentence processing. Trends in Cognitive Sciences, 2, 262-268.

    Google Scholar 

  • Grenander, U. (1967). Syntax-controlled probabilities (Tech. Rep.). Providence, RI: Brown University Division of Applied Mathematics.

    Google Scholar 

  • Grodner, D., Watson, D., & Gibson, E. (2000). Locality effects on sentence processing. In Thirteenth Annual CUNY Conference on Human Sentence Processing. San Diego, CA. (Talk presented at CUNY 2000).

  • Harris, T. (1963). The theory of branching processes. New York: Springer-Verlag.

    Google Scholar 

  • Huang, T., & Fu, K. (1971). On stochastic context-free languages. Information Sciences, 3, 201-224.

    Google Scholar 

  • Inoue, M., & Den, Y. (1999). Influence of verb-predictability on ambiguity resolution in Japanese. Poster presented at the 16th Annual Meeting of the Japanese Cognitive Science Society.

  • Jensen, F. V. (1996). An introduction to Bayesian Networks. London: University College London Press.

    Google Scholar 

  • Jurafsky, D. (1996). A probabilistic model of lexical and syntactic access and disambiguation. Cognitive Science, 20, 137-194.

    Google Scholar 

  • Jurafsky, D., & Martin, J. H. (2000). Speech and language processing: An introduction to natural language processing, computational linguistics and speech recognition. Upper Saddle River, NJ: Prentice-Hall.

    Google Scholar 

  • Kurtzman, H. S. (1985). Studies in syntactic ambiguity resolution. Unpublished doctoral dissertation, MIT.

  • Lang, B. (1974). Deterministic techniques for efficient non-deterministic parsers. In J. Loeckx (Ed.), Proceedings of the 2nd Colloquium on Automata, Languages and Programming (pp. 255-269). SaarbrÜcken.

  • Lang, B. (1988). Parsing incomplete sentences. In Proceedings of the 12th International Conference on Computational Linguistics (pp. 365-371). Budapest.

  • Legendre, G., Miyata, & Smolensky, P. (1990a). Harmonic grammar—a formal multilevel connectionist theory of linguistic well-formedness: An application. In Proceedings of the Twelfth Annual Conference of the Cognitive Science Society (pp. 884-891). Cambridge MA: Erlbaum.

    Google Scholar 

  • Legendre, G., Miyata, Y., & Smolensky, P. (1990b). Harmonic grammar—a formal multilevel connectionist theory of linguistic well-formedness: Theoretical foundations. In Proceedings of the Twelfth Annual Conference of the Cognitive Science Society. (pp. 388-395). Cambridge MA: Erlbaum.

    Google Scholar 

  • MacDonald, M. C., Pearlmutter, N. J., & Seidenberg, M. S. (1994). Lexical nature of syntactic ambiguity resolution. Psychological Review, 101, 676-703.

    Google Scholar 

  • Manning, C. D., & SchÜtze, H. (2000). Foundations of statistical natural language processing. Cambridge, MA: MIT Press.

    Google Scholar 

  • McClelland, J., & St. John, M. (1989). Sentence comprehension: A PDP approach. Language and Cognitive Processes, 4, 287-336.

    Google Scholar 

  • McClelland, J. L., & Kawamoto, A. H. (1986). Mechanisms of sentence processing: Assigning roles to constituents of sentences. In Parallel distributed processing: Explorations in the microstructure of cognition (pp. 272-325). Cambridge, MA: MIT Press.

    Google Scholar 

  • Mitchell, D. C., Cuetos, F., Corley, M. M., & Brysbaert, M. (1995). Exposure-based models of human parsing: Evidence for the use of coarse-grained (nonlexical) statistical records. Journal of Psycholinguistic Research, 24, 469-488.

    Google Scholar 

  • Narayanan, S., & Jurafsky, D. (1998). Bayesian models of human sentence processing. In Proceedings of the 19th Annual Conference of the Cognitive Science Society. University of Wisconsin-Madson.

  • Narayanan, S., & Jurafsky, D. (2002). A Bayesian model predicts human parse preference and reading time in sentence processing. In T. G. Dietterich, S. Becker, and Z. Ghahramani (Eds.), Advances in neural information processing 14. Cambridge, MA: MIT Press.

    Google Scholar 

  • Pearl, J. (1988). Probabilistic reasoning in intelligent systems: networks of plausible inference. San Meteo, CA: Morgan Kaufmann.

    Google Scholar 

  • Pritchett, B. (1988). The grammatical basis of language processing. Language, 64, 539-576.

    Google Scholar 

  • Rodriguez, P. F. (1999). Mathematical foundations of simple recurrent networks in language processing. Unpublished doctoral dissertation, University of California-San Diego.

  • Rohde, D. L. (2002). A connectionist model of sentence comprehension and production. Unpublished doctoral dissertation, Carnegie Mellon University.

  • Rumelhart, D. E., McClelland, J., & PDP Research Group. (1986). Parallel distributed processing: Explorations in the microstructure of cognition. Cambridge, MA: MIT Press.

    Google Scholar 

  • Shannon, C. E. (1948). A mathematical theory of communication. Bell System Technical Journal, 27, 379-423, 623-656.

    Google Scholar 

  • Smolensky, P. (1986). Information processing in dynamical systems: Foundations of harmony theory. In Parallel distributed processing: Explorations in the microstructure of cognition. Cambridge, MA: MIT Press.

    Google Scholar 

  • Steedman, M. (1999). Connectionist sentence processing in perspective. Cognitive Science, 23, 615-634.

    Google Scholar 

  • Steedman, M. (2000). The syntactic process. Cambridge, MA: MIT Press.

    Google Scholar 

  • St. John, M. F., & McClelland, J. L. (1990). Learning and applying contextual constraints in sentence comprehension. Artificial Intelligence, 46, 217-257.

    Google Scholar 

  • Sturt, P., Pickering, M. J., & Crocker, M. W. (1999). Structural change and reanalysis difficulty in language comprehension. Journal of Memory and Language, 40, 136-150.

    Google Scholar 

  • Suppes, P. (1970). Probabilistic grammars for natural language. Synthese, 22, 95-116.

    Google Scholar 

  • Tabor, W. (2000). Fractal encoding of context free grammars in connectionist networks. Expert Systems: The International Journal of Knowledge Engineering and Neural Networks, 17, 41-56.

    Google Scholar 

  • Tabor, W., Juliano, C., & Tanenhaus, M. (1997). Parsing in a dynamical system: An attractor-based account of the interaction of lexical and structural constraints in sentence processing. Language and Cognitive Processes, 12, 211-271.

    Google Scholar 

  • Tabor, W., & Tanenhaus, M. K. (2001). Dynamical systems for sentence processing. In Connectionist psycholinguistics: Capturing the empirical data. Westport, CT: Ablex.

    Google Scholar 

  • Tanenhaus, M., Spivey-Knowlton, M., Eberhard, K., & Sedivy, J. (1995). Integration of visual and linguistic information in spoken language comprehension. Science, 268, 1632-1634.

    Google Scholar 

  • Tanenhaus, M. K., & Trueswell, J. C. (1995). Sentence comprehension. In J. L. Miller & P. D. Eimas (Eds.), Speech, language and communication 2nd ed., (Vol. 11, pp. 217-262). San Diego, CA: Academic Press.

    Google Scholar 

  • Trueswell, J. C. (1996). The role of lexical frequency in syntactic ambiguity resolution. Journal of Memory and Language, 35, 566-585.

    Google Scholar 

  • Trueswell, J. C., Tanenhaus, M. K., & Garnsey, S. M. (1994). Semantic influences on parsing: Use of thematic role information in syntactic disambiguation. Journal of Memory and Language, 33, 285-318.

    Google Scholar 

  • Yngve, V. H. (1960). A model and an hypothesis for language structure. In Proceedings of the American Philosophical Society (Vol. 104), pp. 444-466). Philadelphia.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hale, J. The Information Conveyed by Words in Sentences. J Psycholinguist Res 32, 101–123 (2003). https://doi.org/10.1023/A:1022492123056

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022492123056

Navigation