Skip to main content
Log in

Isolation and Identification of Microorganisms Able to Grow on the Polyester Amide BAK 1095

  • Published:
Journal of environmental polymer degradation Aims and scope Submit manuscript

Abstract

The polyester amide BAK 1095 is fully degraded by microorganisms. Bacteria that can grow on this polymer were isolated from various environments, such as freshwater, saltwater, arable land, woodland and compost. The mechanism of polymer degradation was examined using selected isolates. It was discovered that the bacteria selectively cleave the polymer at its ester bonds, releasing low-molecular water-soluble oligoamides. These can then be metabolised by other microorganisms [1, 2, 3]. The isolates were also tested for their ability to break down other ester-containing polymers such as Degranil W 50, a linear polyester urethane urea. Eight of the 12 strains examined were also able to break down this polymer.

The isolated microorganisms predominantly belong to the genus Bacillus. Mesophilic, halophilic and thermophilic species were isolated. The studies show that polyester amide-degrading bacteria occur in numerous ecosystems and provide data on the microbial breakdown of random copolymers. Information was also obtained on the mechanism involved in the microbial breakdown of polyester amides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. F. Kawai (1995) Adv. Biochem. Biotechnol. 52, 151–194.

    Google Scholar 

  2. T. Fukumura (1966) J. Biochem. 59, 531–536.

    Google Scholar 

  3. T. Fukumura (1966) J. Biochem. 59, 537–544.

    Google Scholar 

  4. R.-J. Müller (1996) Polycom (internet).

  5. M. D. Faber (1979) Enzyme Microb. Technol. 1, 226–32.

    Google Scholar 

  6. Bayer AG (1997) Anwendungstechnische Information ATI 968 d, e.

  7. Bayer AG (1997) Anwendungstechnische Information ATI 0110 d, e.

  8. N. Pfenning, K. C. Lippert (1966) Arch. Microbiol. 55, 245–256.

    Google Scholar 

  9. E. A. Wolin, R. S. Wolfe, and M. J. J. Wolin (1964). J. Bacteriol. 87, 993–998.

    Google Scholar 

  10. R. E. Gordon, W. C. Haynes, and C. H.-N. Pang, (1973) The genus Bacillus, Agricultural Handbook No. 427, Agricultural Research Service, United States Department of Agriculture.

  11. L. T. Miller (1982) Journ. Clin. Microbiol. 16, 584–586.

    Google Scholar 

  12. F. A. Rainey, N. Ward-Rainey, R. M. Kroppenstedt, and E. Stacke-brandt (1996) Int. Journ. of Syst. Bacteriol. 46, 1088–1092.

    Google Scholar 

  13. B. L. Maidak, G. J. Olsen, N. Larsen, M. J. Mc Caughey, and C. Woese (1996) Nucleic Acid Res. 24, 82–85.

    Google Scholar 

  14. N. Saitou and M. Nei (1987) Mol. Biol. Evol. 4, 406–425.

    Google Scholar 

  15. R. Timmerman, personal communication, unpublished results.

  16. S. Kakudo, S. Negoro, I. Urabe, and H. Okada (1993) Appl. Environm. Microbiol. 59, 3978–3980.

    Google Scholar 

  17. S. Kakudo, S. Negoro, I. Urabe, and H. Okada (1995) J. Ferment. Bioeng. 80, 12–17.

    Google Scholar 

  18. H. P. Müller, R. Koch and H. Klein (1999) 6. Fachtagung, “Biologisch abbaubare Werkstoffe” February, 24–25th, 1999.

  19. P. J. Dijkstra, H. Stapert, M. v. d. Zee, H. Feil, and J. Feijen (1997) IUPAC Symposium, Molecular Architecture for Degradable Polymers, Stockholm, June 10–13, 1997.

  20. I. Molina, I. Villuendas, M. Bueno, J. J. Bou, J. A. Galbis, and S. Muñoz-Guerra (1997) IUPAC Symposium, Molecular Architecture for Degradable Polymers, Stockholm, Sweden, June 10–13, 1997.

  21. K. Landgraf, and B. Rieger (1997) IUPAC Symposium, Molecular Architecture for Degradable Polymers, Stockholm, Sweden, June 10–13, 1997.

  22. H. Hosoya, N. Miyazaki, Y. Sugisaki, E. Takanashi, M. Tsurufuji, M. Yamasaki, G. Tamura (1978) Agric. Biol. Chem. 42, 1545–1552.

    Google Scholar 

  23. H. G. Rast, personal communication; unpublished results.

  24. J. Mergaert, and J. Swings (1996) J. Ind. Microb. Biotech. 17, 463–469.

    Google Scholar 

  25. A. L. Allen, J. Mayer, R. Stote, and D. L. Kaplan (1994) J. Environ. Polym. Degrad. 2, 237–244.

    Google Scholar 

  26. V. Andreoni, G. Baggi, C. Guaiti, and P. Mafrin (1995) Intern. Biodeteriorat. Biodegrad. 31, 41–53.

    Google Scholar 

  27. T. Fukumura (1996) Plant Cell Physiol. 7, 93–104.

    Google Scholar 

  28. T. Fukumura (1996) J. Biochem. 59, 537–544.

    Google Scholar 

  29. K. Kato, K. Ohtsuki, Y. Koda, T. Maekawa, T. Yomo, S. Negoro, and I. Urabe (1995) Microbiology 141, 2585–2590.

    Google Scholar 

  30. Ch. Sasikala and Ch. V. Ramana (1996) in S. L. Neidelman and A. I. Laskin (Ed.) Adv. Appl. Microbiol. 42, Academic Press, San Diego, pp. 97–218.

    Google Scholar 

  31. Y. Tokiwa, A. Iwamoto, and M. Koyama (1990) in J. E. Glass, and G. Swift, (Ed.) Agricultural and synthetic polymers, American Chemical Society, Washington, DC. pp. 136–148.

    Google Scholar 

  32. Y. Oda, N. Oida, T. Urakami, and K. Tonomura (1997) FEMS Microbiology letters 152, 339–343.

    Google Scholar 

  33. C. A. Murphy, J. A. Cemeron, S. J. Huang, and R. T. Vinopal (1996) Appl. Environ. Microbiol. 62, 456–460.

    Google Scholar 

  34. Y. Oda, H. Asari, T. Urakami, K. Tonomura (1995) J. Ferment. Bioeng. 80, 265–269.

    Google Scholar 

  35. M. Tsuji and I. Yoshihiro (1978) Hakko Kogaku Kaishi, 56, 799–801.

    Google Scholar 

  36. F. Lefebvre, C. David, and C. Vanderwauven (1996) Polym. Degrad. Stabil. 45, 347–353.

    Google Scholar 

  37. F. Lefebvre, A. Daro, and C. David (1995) J. Macromol. Sci., Pure Appl. Chem. A32, 867–873.

    Google Scholar 

  38. H. Pranamuda, Y. Tokiwa, and H. Tanaka (1995) Appl. Environ. Microbiol. 61, 1828–1832.

    Google Scholar 

  39. C. Ruiz, and G. T. Howard (1997) 97th General Meeting, ASM, Miami Beach, Florida, May 4–8, 1997.

  40. T. Nakajima-Kambe, F. Onuma, N. Kimpara, and T. Nakahara (1995) FEMS Microbiology Letters 129, 39–42.

    Google Scholar 

  41. T. Nakajima-Kambe, F. Onuma, Y. Akutsu, and T. Nakahara (1997) J. Ferment. Bioeng. 83, 456–460.

    Google Scholar 

  42. R. Pryor, U. Charyulu, S. Haddad, R. K. Prakash, and G. L. Bowers-Irons (1991) Report, Order No. AD-A232 948, 10 pp.; From: Gov. Rep. Announce. Index (U.S.) 91, Abstr. No. 52, 918.

    Google Scholar 

  43. G. L. Bowers-Irons, R. Pryor, U. Charyulu, and R. K. Prakash (1991) Report, Order No. AD-A232 108, 9 pp.; From: Gov. Rep. Announce. Index (U.S.) 91, Abstr. No. 140, 927.

    Google Scholar 

  44. R. W. Lenz (1993) Adv. Polym. Sci. 107, 1–40.

    Google Scholar 

  45. Y. Tokiwa, H. Tanaka, P. Harudanin, and M. Yahata (1995), Patent JP 95–160501 19950627.

  46. H. Pranamuda, Y. Tokiwa, and H. Tanaka (1997) Appl. Environ. Microbiol. 63, 1637–1640.

    Google Scholar 

  47. A. Schirmer, C. Matz, and D. Jendrossek (1995) Can. J. Microbiol. 41, 170–179.

    Google Scholar 

  48. J. R. Müller, U. Witt, and W.-D. Deckwer (1997) Fett/Lipid 99, 40–45.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wiegand, S., Steffen, M., Steger, R. et al. Isolation and Identification of Microorganisms Able to Grow on the Polyester Amide BAK 1095. Journal of Polymers and the Environment 7, 145–156 (1999). https://doi.org/10.1023/A:1022897622312

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022897622312

Navigation