Skip to main content
Log in

Optimal Control of Deployment of a Tethered Subsatellite

  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

One of the most important operations during a tethered satellite system mission is the deployment of a subsatellite from a space ship. We restrict tothe simple but practically important case that the system ismoving on a circular orbit around the Earth. The main problem duringdeployment due to gravity gradient is that the two satellites do not move along the straight radial relative equilibrium position which is stable for a tether of constant length. Instead, deploymentleads to an unstable motion with respect to the radial relativeequilibrium configuration. Therefore we introduce an optimal control strategy using theMaximum Principle to achieve a force controlled deployment of the tethered subsatellite from the radial relative equilibrium position close to the space ship to the radial relative equilibrium position far away from the space ship.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abdel-Rahman, E. M. and Nayfeh, A. H., 'Pendulation reduction in boom cranes using cable length manipulation', Nonlinear Dynamics 27, 2002, 255–269.

    Google Scholar 

  2. Bainum, P. and Kumar, V. K., 'Optimal control of the shuttle-tethered-subsatellite system', Acta Astronautica 7, 1980, 1333–1348.

    Google Scholar 

  3. Barkow, B., Steindl, A., Troger, H., and Wiedermann, G., 'Some methods of controlling the deployment of a tethered satellite', International Journal of Vibration and Control, 2003, to appear.

  4. Beardsley, T., 'The way to go in space', Scientific American, February, 1999, 40–77.

  5. Beletsky, V. V. and Levin, E. M., Dynamics of Space Tether Systems, Advances of the Astronautical Sciences, Vol. 83, 1993.

  6. Bryson, A. E. and Ho, Y. C., Applied Optimal Control, Ginn and Company, Waltham, MA, 1969.

    Google Scholar 

  7. Chernousko, F. L., 'Dynamics of retrieval of a space tethered system', Journal of Applied Mathematics and Mechanics 59, 1995, 165–173.

    Google Scholar 

  8. Feichtinger, R. and Hartl, R., Optimale Kontrolle ökonomischer Prozesse, de Gruyter, Berlin, 1986.

    Google Scholar 

  9. Gilmore, R., Catastrophe Theory for Scientists and Engineers, Wiley, New York, 1981.

    Google Scholar 

  10. Hoyt, R. P., Forward, R. L., Nordley, G. D., and Uphoff, C. W., 'Rapid interplanetary tether transport systems', in Proceedings of 50th IAF Congress, Amsterdam, 1999, IAF-99-A.5.10, 31 pp.

  11. Kirk, D. E., Optimal Control Theory, An Introduction, Network Series, Prentice Hall, Englewood Cliffs, NJ, 1970.

    Google Scholar 

  12. Krupa, M., Kuhn, A., Poth, W., Schagerl, M., Steindl, A., Steiner, W., Troger, H., and Wiedermann, G., 'Tethered satellite systems: A new concept of space flight', European Journal of Mechanics. A Solids 19, 2000, S145–S164.

    Google Scholar 

  13. Leitmann, G., An Introduction to Optimal Control, McGraw-Hill, New York, 1966.

    Google Scholar 

  14. Misra, A. K. and Modi, V. J., 'Deployment and retrieval of shuttle supported tethered satellites', Journal of Guidance and Control 5, 1982, 278–285.

    Google Scholar 

  15. Oberle, H. J., Grimm, W., and Berger, E., 'BNDSCO, Rechenprogramm zur Lösung beschränkter optimaler Steuerungsprobleme', Benutzeranleitung, TU München, Report No. M8509, 1985.

    Google Scholar 

  16. Oberle, H. J. and Opfer, G., 'Optimale Steuerung, Einführung in die Theorie und numerische Verfahren', Hamburger Beiträge zur Angewandten Mathematik, Reihe B, Bericht 13, 1989.

  17. Proceedings of the Fourth International Conference on Tethers in Space, Science and Technology Corporation, Hampton, VA, 1995.

  18. Seydel, R., 'A continuation algorithm with step control', in Numerical Methods for Bifurcation Problems, ISNM 70, T. Küpper, H. D. Mittelmann, and H. Weber (eds.), Birkhäuser, Basel, 1984, pp. 480–494.

    Google Scholar 

  19. Steiner, W., Steindl, A., and Troger, H., 'Dynamics of a space tethered satellite system with two rigid endbodies', in Proceedings of the Fourth International Conference on Tethers in Space, (ed.), Science and Technology Corporation, Hampton, VA, 1995, pp. 1367–1379.

    Google Scholar 

  20. Steiner, W., Steindl, A., and Troger, H., 'Center manifold approach to the control of a tethered satellite system', Applied Mathematics and Computation 70, 1995, 315–327.

    Google Scholar 

  21. Wiedermann, G., Schagerl, M., Steindl A., and Troger, H., 'Computation of force controlled deployment and retrieval of a tethered satellite system by the finite element method', in Proceedings of ECCM'99, W. Wunderlich (ed.), TU-München, 1999, pp. 410–429.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steindl, A., Troger, H. Optimal Control of Deployment of a Tethered Subsatellite. Nonlinear Dynamics 31, 257–274 (2003). https://doi.org/10.1023/A:1022956002484

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022956002484

Navigation