Skip to main content
Log in

A Note on k - ε Modelling of Vegetation Canopy Air-Flows

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

The k - ε turbulence model is a standard of computational software packages for engineering, yet its application to canopy turbulence has not received comparable attention. This is probably due to the additional source (and/or sink) terms, whose parameterization remained uncertain. This model must include source terms for both turbulent kinetic energy (k) and the viscous dissipation rate (ε), to account for vegetation wake turbulence budget. In this note, we show how Kolmogorov's relation allows for an analytical solution to be calculated within the portion of a dense and homogeneous canopy where the mixing length does not vary. By substitution within model equations, this solution allows for a set of constraints on source term model coefficients to be derived.Those constraints should meet both Reynolds averaged Navier–Stokes equationsand large-eddy simulation sub-grid scale turbulence modelling requirements.Although originating from within a limited portion of the canopy, the predictedcoefficients values must be valid elsewhere in order to make the model capable of predicting the whole canopy-layer flow with a single set of constants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, L. H. J.: 1968, 'Turbulence and Wind Spectra within a Japanese Larch Plantation', J. Appl. Meteorol. 7, 73-78.

    Google Scholar 

  • Claussen, M.: 1988, 'Models of Eddy Viscosity for Numerical Simulation of Horizontally Inhomogeneous Neutral Surface-Layer Flow', Boundary-Layer Meteorol. 42, 337-369.

    Google Scholar 

  • Detering, H.W. and Etling, D.: 1985, 'Application of the E-ɛ Turbulence Model to the Atmospheric Boundary Layer', Boundary-Layer Meteorol. 33, 113-133.

    Google Scholar 

  • Green, S. R.: 1992, 'Modelling Turbulent Air Flow in a Stand of Widely-Spaced Trees', Phoenics J. 5, 294-312.

    Google Scholar 

  • Green, S. R., Grace, J., and Hutchings, N. J.: 1995, 'Observations of Turbulent Air Flow in Three Stands of Widely Spaced Sitka Spruce', Agric. For. Meteorol. 74, 205-225.

    Google Scholar 

  • Kanda, M. and Hino, M.: 1994, 'Organized Structures in Developing Turbulent Flow within and above a Plant Canopy, Using a Large Eddy Simulation', Boundary-Layer Meteorol. 68, 237-257.

    Google Scholar 

  • Katul, G. G. and Chang, W. H.: 1999, 'Principal Length Scales in Second-Order Closure Models for Canopy Turbulence', J. Appl. Meteorol. 38, 1631-1643.

    Google Scholar 

  • Laadhari, F. et al.: 1994, 'Turbulence Reduction in a Boundary Layer by a Local Spanwise Oscillating Surface', Phys. Fluids A 6, 3218-3220.

    Google Scholar 

  • Launder, B. E. and Spalding, D. B.: 1974, 'The Numerical Computation of Turbulent Flows', Comp. Meth. Appl. Mech. Eng. 3, 269-289.

    Google Scholar 

  • Lee, X. H.: 1996, 'Turbulence Spectra and Eddy Diffusivity over Forests', J. Appl. Meteorol. 35, 1307-1318.

    Google Scholar 

  • Liu, J., Chen, J. M., Black, T. A., and Novak, M. D.: 1996, 'E-ɛ Modelling of Turbulent Air-Flow Downwind of a Model Forest Edge', Boundary-Layer Meteorol. 77, 21-44.

    Google Scholar 

  • Massman, W. J.: 1997, 'An Analytical One-Dimensional Model of Momentum Transfer by Vegetation of Arbitrary Structure', Boundary-Layer Meteorol. 83, 407-421.

    Google Scholar 

  • Perrier, A.: 1967, 'Approche théorique de la microturbulence et des transferts dans les couverts végétaux en vue de l'analyse de la production végétale', La Météorologie 4, 527-550.

    Google Scholar 

  • Raupach, M. R. and Shaw, R. H.: 1982, 'Averaging Procedures for Flow within Vegetation Canopies', Boundary-Layer Meteorol. 22, 79-90.

    Google Scholar 

  • Seginer, I.: 1974, 'Aerodynamic Roughness of Vegetated Surfaces', Boundary-Layer Meteorol. 5, 383-393.

    Google Scholar 

  • Thom, A. S.: 1971, 'Momentum Absorption by Vegetation', Quart. J. Roy. Meteorol. Soc. 97, 414-428.

    Google Scholar 

  • Wilson, N. R. and Shaw, R. H.: 1977, 'A Higher Closure Model For Canopy Flow', J. Appl.Meteorol. 16, 1197-1205.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sanz, C. A Note on k - ε Modelling of Vegetation Canopy Air-Flows. Boundary-Layer Meteorology 108, 191–197 (2003). https://doi.org/10.1023/A:1023066012766

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023066012766

Navigation