Skip to main content
Log in

Economic Potential of Biomass Based Fuels for Greenhouse Gas Emission Mitigation

  • Published:
Environmental and Resource Economics Aims and scope Submit manuscript

Abstract

Use of biofuels diminishes fossil fuelcombustion thereby also reducing net greenhousegas emissions. However, subsidies are neededto make agricultural biofuel productioneconomically feasible. To explore the economicpotential of biofuels in a greenhouse gasmitigation market, we incorporate data onproduction and biofuel processing for thedesignated energy crops switchgrass, hybridpoplar, and willow in an U.S. AgriculturalSector Model along with data on traditionalcrop-livestock production and processing, andafforestation of cropland. Net emissioncoefficients on all included agriculturalpractices are estimated through crop growthsimulation models or taken from the literature. Potential emission mitigation policies ormarkets are simulated via hypothetical carbonprices. At each carbon price level, theAgricultural Sector Model computes the newmarket equilibrium, revealing agriculturalcommodity prices, regionally specificproduction, input use, and welfare levels,environmental impacts, and adoption ofalternative management practices such asbiofuel production. Results indicate no rolefor biofuels below carbon prices of $40 perton of carbon equivalent. At these incentivelevels, emission reductions via reduced soiltillage and afforestation are more costefficient. For carbon prices above $70,biofuels dominate all other agriculturalmitigation strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, D. M., R. J. Alig, J. M. Callaway and B. A. McCarl (1996), The Forest and Agricultural Sector Optimization Model (FASOM): Model Structure and Policy Applications. USDA Forest Service Report PNW-RP-495.

  • Alig, R. J., D. M. Adams and B. A. McCarl (1998), ‘Impacts of Incorporating Land Exchanges Between Forestry and Agriculture in Sector Models’, Journal of Agricultural and Applied Economics 30(2), 389-401.

    Google Scholar 

  • Badin, J. and J. Kirschner (November 1998), ‘Biomass Greens U.S. Power Production’, Renewable Energy World 1(3), 40-45.

    Google Scholar 

  • Benson, V (February 1999), National Resource Conservation Service, U.S. Department of Agriculture Crop Enterprise Budgets, Personal Communication.

  • Chang, C. C., B. A. McCarl, J. W. Mjelde and J. W. Richardson (1992), ‘Sectoral Implications of Farm Program Modifications’, American Journal of Agricultural Economics 74, 38-49.

    Article  Google Scholar 

  • Coble, K. H., C. C. Chang, B. A. McCarl, B. R. Eddleman (1992), ‘Assessing Economic Implications of New Technology: The Case of Cornstarch-Based Biodegradable Plastics’, Review of Agricultural Economics 14, 33-43.

    Article  Google Scholar 

  • Cole, C. V., C. Cerri, K. Minami, A. Mosier, N. Rosenberg, D. Sauerbeck, J. Dumanski, J. Duxbury, J. Freney, R. Gupta, O. Heinemeyer, T. Kolchugina, J. Lee, K. Paustian, D. Powlson, N. Sampson, H. Tiessen, M. van Noordwijk and Q. Zhao (1996), ‘Agricultural options for the mitigation of greenhouse gas emissions’ Chapter 23, in Climate Change 1995: Impacts, Adaptation, and Mitigation of Climate Change: Scientific-Technical Analyses, prepared by IPCC Working Group II (pp. 726-771). Cambridge, England: Cambridge University Press.

    Google Scholar 

  • Council of Economic Advisors (CEA) (July 1998), The Kyoto Protocol and the President's Policies to Address Climate Change: Administration Economic Analysis [Online]. Available HTTP:www. whitehouse.gov/WH/New/html/augnew98.html#Kyoto.

  • Cushman, J., G. Marland and B. Schlamadinger (1995), ‘Biomass Fuels, Energy, Carbon, and Global Climate Change’, in Energy and Global Climate Change, Oak Ridge National Laboratory Review 28(2 & 3), special issue (pp. 14-21) [Online]. Available HTTP: www.ornl.gov/ ORNLReview/rev28-2/text/contents.htm.

    Google Scholar 

  • Gallagher, P. and D. Johnson (1999), ‘Some New Ethanol Technology: Cost Competition and Adoption Effects in the Petroleum Market’, The Energy Journal 20(2), 89-120.

    Google Scholar 

  • IPCC (2000), ‘Land Use, Land-use Change, and Forestry’, in: Robert T. Watson, Ian R. Noble, Bert Bolin, N. H. Ravindranath, David J. Verardo and David J. Dokken, eds., Special Report of the Intergovernmental Panel on Climate Change, Geneva Switzerland (p. 375). U.K.: Cambridge University Press.

    Google Scholar 

  • Kline D., T. Hargrove and C. Vanderlan (1998), ‘Treatment of Biomass Fuels in Carbon Emissions Trading Systems’, Washington, DC: Center for Clean Air Policy, 7 pp., NREL Report No. 32140.

  • Lal, R., J. M. Kimble, R. F. Follett and C. V. Cole (1997), The Potential of U.S. Cropland to Sequester Carbon and Mitigate the Greenhouse Effect, 128 pp. Chelsea MI: Sleeping Bear Press Inc.

    Google Scholar 

  • Mann, M. K. and P. L. Spath (1997), Life Cycle Assessment of a Biomass Gasification Combined-Cycle Power System. National Renewable Energy Laboratory, Golden, CO, TP-430-23076.

    Google Scholar 

  • Marland, G. and B. Schlamadinger (1997), ‘Forests for Carbon Sequestration or Fossil Fuel Substitution A Sensitivity Analysis’, Biomass and Bioenergy 13, 389-397.

    Article  Google Scholar 

  • Marland, G., B. A. McCarl and U. A. Schneider (October 2001), ‘Soil Carbon: Policy and Economics’, Climatic Change 51(1), 101-117.

    Article  Google Scholar 

  • McCarl, B. A., C. C. Chang, J. D. Atwood and W. I. Nayda (2001), Documentation of ASM: The U.S. Agricultural Sector Model, Unpublished Report, Texas A&M University [Online]. Available HTTP: ageco.tamu.edu/faculty/mccarl/asm.htm.

  • McCarl, B. A. (1998), Carbon Sequestration via Tree Planting on Agricultural Lands: An Economic Study of Costs and Policy Design Alternatives, Paper presented at the Energy Modeling Forum, Snowmass CO, 3-11 August [Online]. Available HTTP: ageco.tamu.edu/faculty/mccarl/papers/ 676.pdf.

  • McCarl, B. A. and B. C. Murray (2001), Harvesting the Greenhouse: Comparing Biological Sequestration with Emissions Offsets. Department of Agricultural Economics, Texas A&M University, College Station, TX [Online]. Available HTTP: ageco.tamu.edu/faculty/mccarl/papers/885.pdf.

    Google Scholar 

  • McCarl, B. A. and U. A. Schneider (1999), ‘Curbing Greenhouse Gases: Agriculture's Role’, Choices First Quarter, 9-12.

  • McCarl, B. A. and U. A. Schneider (2000), ‘U.S. Agriculture's Role in a Greenhouse Gas Mitigation World: An Economic Perspective’, Review of Agricultural Economics 22(1), 134-159.

    Article  Google Scholar 

  • McCarl, B. A. and U. A. Schneider (2001), ‘The Cost of Greenhouse Gas Mitigation in U.S. Agriculture and Forestry’, Science, Forthcoming.

  • McCarl, B. A., D. M. Adams and R. J. Alig (2000), ‘Analysis of Biomass Fueled Electrical Powerplants: Implications in the Agricultural & Forestry Sectors’, Annals of Operations Research 94, 37-55.

    Article  Google Scholar 

  • MacCracken, C. N., J. A. Edmonds, S. H. Kim and R. D. Sands (May 1999), ‘The Economics of the Kyoto Protocol, in The Costs of the Kyoto Protocol: A Multi-Model Evaluation’, Special Issue of The Energy Journal, 25-72.

  • Mendelsohn, R and J. E. Neumann (1999), The Impact Of Climate Change On The United States Economy, 344 pp. Cambridge University Press.

  • Moulton, R. J. and K. B. Richards (1990), Costs of Sequestering Carbon Through Tree Planting and Forest Management in the U.S. Washington DC: USDA Forest Service, General Technical Report WO-58.

    Google Scholar 

  • Pautsch, G. R., L. A. Kurkalova, B. Babcock, and C. L. Kling (April 2001), ‘The Efficiency of Sequestering Carbon in Agricultural Soils’, Contemporary Economic Policy 19, 123-134.

    Article  Google Scholar 

  • Reilly, J. M. (2002), Agriculture: The Potential Consequences of Climate Variability and Change for the United States, 136 pp. Cambridge: Cambridge University Press.

    Google Scholar 

  • Rosenberg, N. J., R. C. Izaurralde and E. L. Malone, eds. (1999), Carbon Sequestration in Soils: Science, Monitoring, and Beyond. Proceedings of the St. Michaelis Workshop, Batelle Pacific Northwest Laboratory.

  • Samson, R. and P. Duxbury, M. Drisdelle, and C. Lapointe (2000), ‘Assessment of Pelletized Biofuels’, PERD Program, Natural Resources Canada, Contract 23348-8-3145/001/SQ.

  • Schneider, U. A. (December 2000), Agricultural Sector Analysis on Greenhouse Gas Emission Mitigation in the U.S. PhD Dissertation, Department of Agricultural Economics, Texas A&M University.

  • Sedjo, R. A. (Feb 2000), ‘Forests, A Tool to Moderate Global Warming?’, Environment 13, 1, 14.

    Google Scholar 

  • Shapouri, H (Feb 2000), Personal Communication USDA Office of Energy, Washington D.C.

  • Spath, P. L and M. K. Mann (1999), Life Cycle Assessment of Coal-fired Power Production. National Renewable Energy Laboratory, Golden, CO, TP-570-25119.

    Google Scholar 

  • Stavins, R. N. (September 1999), ‘The Costs of Carbon Sequestration: A Revealed-Preference Approach’, American Economics Review 89(4), 994-1009.

    Article  Google Scholar 

  • United Nations, Framework Convention on Climate Change (March 1998), Kyoto Protocol. Climate Change Secretariat (UNFCCC) [Online]. Available HTTP: www.unfccc.de/resource/convkp. html.

  • U.S. Environmental Protection Agency (May 1999a), Inventory of U.S. Greenhouse Gas Emissions and Sinks, 1990-1997. Washington DC: EPA-236-R-99-003.

  • U.S. Environmental Protection Agency (September 1999b), U.S. Methane Emissions 1990-2020: Inventories, Projections, and Opportunities for Reductions.Washington DC: EPA 430-R-99-013.

  • U.S. Global Change Research Program (2000), U.S. National Assessment, The Potential Consequences of Climate Variability and Change [Online]. Available HTTP: www.nacc.usgcrp. gov.

  • Walsh, M. E., D. de la Torre Ugarte, S. Slinsky, R. L. Graham, H. Shapouri and D. Ray (1998), ‘Economic Analysis of Energy Crop Production in the U.S.-Location, Quantities, Price and Impacts on the Traditional Agricultural Crops’, Bioenergy 98: Expanding Bioenergy Partnerships 4-8 October 2, 1302-1310. Madison Wisconsin.

    Google Scholar 

  • Wang, M. Q. (August 1999), GREET 1.5-Transportation Fuel Cycle Model. Argonne National Laboratory Report ANL/ESD-39.

  • Wang, W., C. Saricks and D. Santini (January 1999), Effects of Fuel Ethanol Use on Fuel-Cycle Energy and Greenhouse Gas Emissions. Center for Transportation Research, Argonne National Laboratory, ANL/ESD-38.

  • West, T. O. and W. M. Post (2000), ‘Soil Organic Carbon Sequestration Rates for Crops with Reduced Tillage and Enhanced Rotation’, Soil Science Society of America Journal 66, 1930-1946.

    Article  Google Scholar 

  • Williams, J. R., C. A. Jones, J. R. Kiniry and D. A. Spaniel (1989), ‘The EPIC Crop Growth Model’, Transactions of The American Society of Agricultural Engineers 32, 497-511.

    Google Scholar 

  • Yacobucci, B. D. and J. Womach (March 2000), RL30369: Fuel Ethanol: Background and Public Policy Issues, The National Council for Science and the Environment, Congressional Research Service Report, Washington, D.C.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schneider, U.A., McCarl, B.A. Economic Potential of Biomass Based Fuels for Greenhouse Gas Emission Mitigation. Environ Resource Econ 24, 291–312 (2003). https://doi.org/10.1023/A:1023632309097

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023632309097

Navigation