Skip to main content
Log in

Alkaline Degradation of Cellulose: Mechanisms and Kinetics

  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Cellulose powder and softwood sawdust were subjected to alkaline degradation under conditions representative of a cementitious environment for periods of 7 and 3 years, respectively. During the first 3 years, sampling was frequent, and data on the degradation of cellulose and production of isosaccharinic acid was used for establishing long-term prediction models. Samples after an additional period of 4 years were compared to the predicted values. The total rate of degradation was measured as the increase in total organic carbon (TOC) in corresponding solutions. A previously published theoretical model of degradation kinetics gave a good approximation of the present experimental data. Peeling-off, stopping, and alkaline hydrolysis reaction rate constants were obtained as model parameters, and the results suggested that the transformation of the glucose end group is the rate-limiting step in the cellulose peeling-off reaction and also determines the pH dependence of that reaction. After 3 years, isosaccharinic (ISA) acid represented 70–85% of all degradation products as quantified by capillary zone electrophoresis. The long-term prediction model indicated that all of the cellulose would be degraded after only 150–550 years. The control sampling after 7 years points toward a lower degradation of cellulose and production of ISA than predicted by the model, reflecting either a degradation of ISA that was faster than the production or a termination of the ISA production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Blazej and M. Kosík (1985) in J. F. Kennedy, G. O. Phillips, D. J. Wedlock, and P. A. Williams (Eds.), Cellulose and its Derivates: Chemistry, Biochemistry and Application, Ellis Horwood Limited, New York, pp. 97.

    Google Scholar 

  2. P. C. Gupta and A. Day (1984) Cellulose Chem. Technol. 18, 79.

    Google Scholar 

  3. O. Theander, (1988) in S. Tipson and D. Horton, (Eds.) Advances in Carbohydrate Chemistry and Biochemistry, Vol. 46, R. Academic Press, San Diego, pp. 273.

    Google Scholar 

  4. K. Niemelä and E. Sjöström (1986) Biomass 11, 215.

    Google Scholar 

  5. G. M. N. Baston, J. A. Berry, K. A. Bond, M. Brownsword, and C. M. Linklater (1992) Radiochim. Acta 58/59, 349.

    Google Scholar 

  6. J. A. Berry, K. A. Bond, D. R. Ferguson, and N. J. Pilkington (1991) Radiochim. Acta 52/53, 201.

    Google Scholar 

  7. M. Wiborgh (1995) Prestudy of Final Disposal of Long-Lived Low and Intermediate Level Waste, TR 95-03V, Swedish Nuclear Fuel and Wste Management Company (SKB), Stockholm.

    Google Scholar 

  8. L. R. Van Loon and M. A. Glaus (1997) J. Environ. Polym. Degrad. 5, 97.

    Google Scholar 

  9. B. F. Greenfield, W. N. Harrison, G. P. Robertson, P. J. Somers, and M. W. Spindler (1993) Mechanistic Studies of the Alkaline Degradation of Cellulose in Cement, NSS/R727, AEA Technology, Harwell, United Kingdom.

    Google Scholar 

  10. X. Bourbon and P. Toulhoat (1996) Radiochim. Acta 74, 315.

    Google Scholar 

  11. M. H. Johansson and O. Samuelson (1978) J. Appl. Polym. Sci. 22, 615.

    Google Scholar 

  12. B. Y. Yang and R. Montgomery (1996) Carbohydr. Res. 280, 27.

    Google Scholar 

  13. Y.-Z. Lai and K. V. Sarkanen (1969) J. Polym. Sci. Part C 28, 15.

    Google Scholar 

  14. I. Ziderman and J. Bel-Ayche (1978) J. Appl. Polym. Sci. 22, 1151.

    Google Scholar 

  15. I. Ziderman and J. Bel-Ayche (1986) J. Appl. Polym. Sci. 32, 3255.

    Google Scholar 

  16. B. Lagerblad and J. Trägårdh (1995) Conceptual Model for Concrete Long Time Degradation in Deep Nuclear Waste Repository, TR 95-21, Swedish Nuclear Fuel and Waste Management Company (SKB), Stockholm.

    Google Scholar 

  17. R. L. Whistler and J. N. Biller (1963) in L. Whistler and J. N. Biller (Eds.), Methods in Carbohydrate Chemistry. Academic Press, San Diego.

    Google Scholar 

  18. P. Jandik and W. R. Jones (1991) J. Chromatogr. 546, 431.

    Google Scholar 

  19. J. Hagberg, J. Dahlén, S. Karlsson, and B. Allard (2000) Intern. J. Environ. Anal. Chem. 78, 385.

    Google Scholar 

  20. D. W. Haas, F. Hrutfiord, and K. V. Sarkanen (1967) J. Appl. Polym. Sci. 11, 587.

    Google Scholar 

  21. SPSS for Windows, version 8.0.0, (1997), SPSS Inc.

  22. I. Ziderman and J. Bel-Ayche (1978) J. Appl. Polym. Sci. 22, 711.

    Google Scholar 

  23. E. R. Garret and J. F. Young (1970) J. Org. Chem. 35, 3502.

    Google Scholar 

  24. J. M. Los and L. B. Simpson (1956) Recl. Trav. Chim. 75, 267.

    Google Scholar 

  25. T. W. G. Solomons (1994) Fundamentals of Organic Chemistry, John Wiley & Sons, New York.

    Google Scholar 

  26. L. R. Van Loon, M. A. Glaus, S. Stallone, and A. Laube (1997) Environ. Sci. Technol. 31, 1243.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jessika Hagberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pavasars, I., Hagberg, J., Borén, H. et al. Alkaline Degradation of Cellulose: Mechanisms and Kinetics. Journal of Polymers and the Environment 11, 39–47 (2003). https://doi.org/10.1023/A:1024267704794

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024267704794

Navigation