Skip to main content
Log in

The Nature of Electrophilic and Nucleophilic Oxygen Adsorbed on Silver

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

Results of a spectroscopic study of two forms of adsorbed atomic oxygen on a silver surface, which participate in ethylene epoxidation reaction, are presented. The possibility of the combined use of the methods of photoelectron spectroscopy and X-ray absorption for a detailed analysis of adsorbate electron structure on solid surfaces is demonstrated. It is found that a significant difference in the position of O 1s lines for nucleophilic (528.3 eV) and electrophilic (530.4 eV) oxygen is determined by the effects of the initial state, that is, by the difference in the charge state of oxygen anions. The use of the well-know correlation of the Auger line splitting with a Pauling charge at an oxygen atom showed a substantial difference (∼1 electron charge unit) in charge transfer from metal to the nucleophilic or electrophilic adsorbed oxygen atom. Based on the X-ray absorption data of the oxygen K-edge, it is found that there is a substantial overlap of the 4d- and 5sp orbitals of silver with oxygen 2p orbitals in the nucleophilic state in the formation of an Ag–O bond and there is only an overlap of 5sp orbitals of silver with oxygen 2p orbitals in the electrophilic state. Structural models of the adsorption site are presented for both states. The conclusion is drawn that the charge state of oxygen in oxide systems may depend substantially on its binding to metal atoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Kilty, P.A. and Sachtler, W.M.H., Catal. Rev.-Sci. Eng., 1974, vol. 10, p. 1.

    Google Scholar 

  2. Sachtler, W.M.H., Backx, C., and van Santen, R.A., Catal. Rev.-Sci. Eng., 1981, vol. 23, p. 127.

    Google Scholar 

  3. Backx, C., Moolhuysen, J., Geenen, P., and van Santen, R.A., J. Catal., 1981, vol. 72, p. 364.

    Google Scholar 

  4. Campbell, C.T., J. Catal., 1985, vol. 94, p. 436.

    Google Scholar 

  5. Van Santen, R.A. and de Groot, C.P.M., J. Catal., 1986, vol. 98, p. 530.

    Google Scholar 

  6. Van Santen, R.A. and Kuipers, H.P.C.E., Adv. Catal., 1987, vol. 35, p. 265.

    Google Scholar 

  7. Grant, R.B. and Lambert, R.M., J. Catal., 1985, vol. 92, p. 364.

    Google Scholar 

  8. Khasin, A.V., Kinet. Katal., 1993, vol. 34, no.1, p. 42.

    Google Scholar 

  9. Bal'zhinimaev, B.S., Kinet. Katal., 1999, vol. 40, no.6, p. 879.

    Google Scholar 

  10. Bukhtiyarov, V.I., Boronin, A.I., Prosvirin, I.P., and Savchenko, V.I., J. Catal., 1994, vol. 150, p. 268.

    Google Scholar 

  11. Bukhtiyarov, V.I., Prosvirin, I.P., and Kvon, R.I., Surf. Sci., 1994, vol. 320, p. 47.

    Google Scholar 

  12. Boronin, A.I., Avdeev, V.I., Koshcheev, S.V., Murzakhmetov, K.T., Ruzankin, S.F., and Zhidomirov, G.M., Kinet. Katal., 1999, vol. 40, no.5, p. 721.

    Google Scholar 

  13. Bukhtiyarov, V.I., Kaichev, V.V., Podgornov, E.A., and Prosvirin, I.P., Catal. Lett., 1999, vol. 57, p. 233.

    Google Scholar 

  14. Bukhtiyarov, V.I., Hävecker, M., Kaichev, V.V., Knop-Gericke, A., Mayer, R.W., and Schlögl, R., Catal. Lett., 2001, vol. 74, p. 121.

    Google Scholar 

  15. Bukhtiyarov, V.I., Hävecker, M., Kaichev, V.V., Knop-Gericke, A., Mayer, R.W., and Schlögl, R., Nucl. Instrum. Methods Phys. Res. A., 2001, vol. 470, p. 302.

    Google Scholar 

  16. Bao, X., Muhler, M., Pettinger, B., Schlögl, R., and Ertl, G., Catal. Lett., 1993, vol. 22, p. 215.

    Google Scholar 

  17. Bao, X., Muhler, M., Shedel-Niedrig, Th., and Schlögl, R., Phys. Rev. B, 1996, vol. 54, p. 2249.

    Google Scholar 

  18. Campbell, C.T. and Paffett, M.T., Surf. Sci., 1984, vol. 143, p. 517.

    Google Scholar 

  19. Campbell, C.T., Surf. Sci., 1985, vol. 157, p. 43.

    Google Scholar 

  20. Bare, S.R., Griffiths, K., Lennard, W.N., and Tang, H.T., Surf. Sci., 1995, vol. 342, p. 185.

    Google Scholar 

  21. Bukhtiyarov, V.I., Kaichev, V.V., and Prosvirin, I.P., J. Chem. Phys., 1999, vol. 111, p. 2169.

    Google Scholar 

  22. Carlisle, C.I., Fujimoto, T., Sim, W.S., and King, D.A., Surf. Sci., 2000, vol. 470, p. 15.

    Google Scholar 

  23. Taniguchi, M., Tanaka, K., Hashizume, T., and Sakurai, T., Surf. Sci., 1992, vol. 262, p. 123.

    Google Scholar 

  24. Pascal, M., Lamont, C.L.A., Baumgartel, P., Terborg, R., Hoeft, J.T., Schaff, O., Polcik, M., Bradshow, A.M., Toomes, R.L., and Woodruff, D.P., Surf. Sci., 2000, vol. 464, p. 83.

    Google Scholar 

  25. Rocca, M., Savio, L., Vattuone, L., Burghaus, U., Palomba, V., Novelli, N., Buatier de Mongeot, F., Valbusa, U., Gunnela, R., Gomelli, G., Baraldi, A., Lizzit, S., and Paolucci, G., Phys. Rev. B, 2000, vol. 61, p. 213.

    Google Scholar 

  26. Bukhtiyarov, V.I., Carley, A.F., Dollard, L.A., and Roberts, M.W., Surf. Sci., 1997, vol. 381, p. L605.

    Google Scholar 

  27. Bukhtiyarov, V.I. and Kaichev, V.V., J. Mol. Catal. A: Chem., 2000, vol. 158, p. 167.

    Google Scholar 

  28. Rovida, G. and Pratesi, F., Surf. Sci., 1975, vol. 52, p. 542.

    Google Scholar 

  29. Engelhadt, H.A. and Menzel, D., Surf. Sci., 1976, vol. 57, p. 591.

    Google Scholar 

  30. Marbrow, R.A. and Lambert, R.M., Surf. Sci., 1978, vol. 71, p. 107.

    Google Scholar 

  31. Carter, E.A., and Goddard, W.A., III, J. Catal., 1988, vol. 112, p. 80.

    Google Scholar 

  32. Carter, E.A. and Goddard, W.A., III, Surf. Sci., 1989, vol. 209, p. 243.

    Google Scholar 

  33. Sekiba, D., Nakamizo, H., Ozawa, R., Gunji, Y., and Fukutani, H., Surf. Sci., 2000, vol. 449, p. 111.

    Google Scholar 

  34. Savio, L., Vattuone, L., Rocca, M., De Renzi, V., Gardonio, S., Mariani, C., Del Pennino, U., Cipriani, G., Dal Corso, A., and Baroni, S., Surf. Sci., 2001, vol. 486, p. 65.

    Google Scholar 

  35. Joyner, R.W., Roberts, M.W., and Yates, K., Surf. Sci., 1979, vol. 87, p. 501.

    Google Scholar 

  36. Prosvirin, I.P., Tikhomirov, E.P., Sorokin, A.M., Kaichev, V.V., and Bukhtiyarov, V.I., Kinet. Katal., 2003, vol. 44 (in press).

  37. Kaichev, V.V., Sorokin, A.M., Timoshin, A.I., and Vovk, E.I., Prib. Tekh. Eksp., 2002, no. 1, p. 58.

    Google Scholar 

  38. Knop-Gericke, A., Hävecker, M., Neisius, Th., and Shedel-Niedrig, Th., Nucl. Instrum. Methods Phys. Res. A, 1998, vol. 406, p. 311.

    Google Scholar 

  39. Minachev, Kh.M. and Khodakov, Yu.S., Abstracts of Papers, XII Mendeleevskii s”ezd po obshchei i prikladnoi khimii (XII Mendeleev Congr. on General and Applied Chemistry), Moscow: Nauka, 1981.

    Google Scholar 

  40. Nefedov, V.I., Rentgenoelektronnaya spektroskopiya khimicheskikh soedinenii (X-ray Electron Spectroscopy of Chemical Compounds), Moscow: Khimiya, 1984.

    Google Scholar 

  41. Wagner, C.D., Faraday Discuss., 1975, no. 60, p. 291.

    Google Scholar 

  42. Wagner, C.D., J. Electron Spectrosc. Relat. Phenom., 1977, vol. 10, p. 305.

    Google Scholar 

  43. Wagner, C.D., Gale, L.H., and Raymond, R.H., Anal. Chem., 1979, vol. 51, p. 466.

    Google Scholar 

  44. Wagner, C.D., Zatko, D.A., and Raymond, R.H., Anal. Chem., 1980, vol. 52, p. 1445.

    Google Scholar 

  45. Hohlneicher, G., Pulm, H., and Freund, H.-J., J. Electron Spectrosc. Relat. Phenom., 1985, vol. 37, p. 209.

    Google Scholar 

  46. Tjeng, L.H., Meinders, M.B.J., van Elp, J., Ghijsen, J., Sawatzky, G.A., and Johnson, R.L., Phys. Rev. B: Condens. Matter, 1990, vol. 41, p. 3190.

    Google Scholar 

  47. Ascarelli, P. and Moretti, G., Surf. Interface Anal., 1985, vol. 7, p. 8.

    Google Scholar 

  48. Weiβmann, R., Solid State Commun., 1979, vol. 31, p. 347.440

    Google Scholar 

  49. Martin, R.L. and Hay, P.J., Surf. Sci., 1983, vol. 130, p. L283.

    Google Scholar 

  50. Stöhr, J., NEXAFS Spectroscopy, Berlin: Springer, 1992, vol. 25.

    Google Scholar 

  51. De Groot, F.M.F., Grioni, M., Fuggle, J.C., Ghijsen, J., Sawatzky, G.A., and Petersen, H., Phys. Rev. B 1989, vol. 40, p. 5715.

    Google Scholar 

  52. Purans, J., Kuzmin, A., Parent, Ph., and Laffon, C., Physica B, 1999, vols. 259-261, p. 1157.

    Google Scholar 

  53. Behrens, P., Solid State Commun., 1992, vol. 81, p. 235.

    Google Scholar 

  54. Behrens, P., Aβmann, S., Bilow, U., Linke, C., and Jansen, M., Z. Anorg. Allg. Chem, 1999, vol. 625, p. 111.

    Google Scholar 

  55. Deb, A. and Chatterijee, A.K., J. Phys.: Condens. Matter, 1998, vol. 10, p. 11719.

    Google Scholar 

  56. Knop-Gericke, A., Hävecker, M., Shedel-Niedrig, Th., and Schlögl, R., Catal. Lett., 2000, vol. 66, p. 215.

    Google Scholar 

  57. Knop-Gericke, A., Hävecker, M., Shedel-Niedrig, Th., and Schlögl, R., Top. Catal., 2000, vol. 10, p. 187.

    Google Scholar 

  58. Zil'berberg, I.L., Milov, M.A., and Zhidomirov, G.M., Zh. Strukt. Khim., 1999, vol. 40, p. 422.

    Google Scholar 

  59. Milov, M.A., Zil'berberg, I.L., Ruzankin, S.F., and Zhidomirov, G.M., Zh. Strukt. Khim., 2000, vol. 41, p. 248.

    Google Scholar 

  60. Milov, M.A., Zilberberg, I.L., Ruzankin, S.Ph., and Zidomirov, G.M., J. Mol. Catal. A: Chem., 2000, vol. 158, p. 309.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaichev, V.V., Bukhtiyarov, V.I., Hävecker, M. et al. The Nature of Electrophilic and Nucleophilic Oxygen Adsorbed on Silver. Kinetics and Catalysis 44, 432–440 (2003). https://doi.org/10.1023/A:1024459305551

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024459305551

Keywords

Navigation