Skip to main content
Log in

A New Fluorometric Method for the Detection of the Neurotransmitter Acetylcholine in Water Using a Dansylcholine Complex with p-Sulfonated Calix[8]arene

  • Published:
Journal of inclusion phenomena and macrocyclic chemistry Aims and scope Submit manuscript

Abstract

A new method for the fluorometric detection of the neurotransmitter acetylcholine (ACh) in water is presented. Use of the fluorescence of dansylcholine (DANCh) bound to p-sulfonated calix[8]arene affords a new fluorometric method for the detection of ACh (>10-4 M) inaqueous solution (pH = 6.9). The fluorescence intensity of DANCh in aqueous solution was enhanced 1.8 fold after the complexation with p-sulfonated calix[8]arene. The addition of ACh to the aqueous solution of the DANCh-calix[8]arene complex significantly decreased the fluorescence intensity, which results from the replacement of DANCh in the complex with ACh. The effects of other synaptic neurotransmitters on the fluorescence of the DANCh complex were examined for dopamine, histamine, ATP, GABA, glycine, l-glutamic acid, and l-aspartic acid. Among the neurotransmitters studied, ACh was most effective in changing the fluorescence of the DANCh complex. Possible application of the DANCh complex dye for the detection of ACh in biological systems is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.R. Lakowics (eds.): Topics in Fluorescence Spectroscopy, Vol. 4 (Probe Design and Chemical Sensing), Plenum Press, New York (1994).

  2. R. Nuccitelli (eds.): Methods in Cell Biology, Volume 40: A Practical Guide to the Study of Calcium in Living Cells, Academic Press, New York (1994).

  3. B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts, and J.D. Watson (eds.), Molecular Biology of the Cell, 3rd edn, Gerland Publishing, New York (1994), pp. 721-785.

    Google Scholar 

  4. Y. Hasegawa, M. Kunihara, and Y. Maruyama: J. Chromatogr. 239, 335 (1982).

    Google Scholar 

  5. K. Honda, K. Miyaguchi, H. Nishino, H. Tanaka, T. Yao, and K. Imai: Anal. Biochem. 153, 50 (1986); J. Ricny, J. Coupek, and S. Tucek: Anal. Biochem. 176, 221 (1989).

    Google Scholar 

  6. H.C. Chang and J.H. Gaddum: J. Physiol. (London) 79, 255 (1933).

    Google Scholar 

  7. S. Hestrin: J. Biol. Chem. 180, 249 (1949).

    Google Scholar 

  8. J. Schuberth, B. Sparf, and A. Sundwall: J. Neurochem. 16, 695 (1969); M.E. Feigenson and J.K. Saeleus: Biochem. Pharmacol. 18, 1479 (1969).

    Google Scholar 

  9. I. Hanin and R.F. Skinner: Anal. Biochem. 66, 568 (1975); P.E. Potter, J.L. Meek, and N.H. Neff: J. Neurochem. 41, 188 (1983).

    Google Scholar 

  10. J.H. Fellman: J. Neurochem. 16, 135 (1969).

    Google Scholar 

  11. I. Inouye, K. Hoshimoto, and K. Isagawa: J. Am. Chem. Soc. 116, 5517 (1994).

    Google Scholar 

  12. K.N. Koh, K. Araki, A. Ikeda, H. Otsuka, and S. Shinkai: J. Am. Chem. Soc. 118, 755 (1996).

    Google Scholar 

  13. G. Weber and D.P. Borris: Mol. Pharmacol. 7, 530 (1971).

    Google Scholar 

  14. G. Weber: Biochem. J. 51, 155 (1952).

    Google Scholar 

  15. J.B. Cohen and J.P. Changeux: Biochemistry 12, 4855 (1973); J.B. Cohen, M. Weber, and J.P. Changeux: Mol. Pharmacol. 10, 904 (1974).

    Google Scholar 

  16. R.F. Chen and J.C. Kernohan: J. Biol. Chem. 242, 5813 (1967).

    Google Scholar 

  17. S. Hamai, T. Ikeda, A. Nakamura, H. Ikeda, A. Ueno, and F. Toda: J. Am. Chem. Soc. 114, 6012 (1992).

    Google Scholar 

  18. K. Maruyama and K. Aoki: Chem. Commun. 119 (1997); J.-M. Lehn, R. Meric, J.-P. Vigneron, M. Cerario, J. Guilhem, C. Pascard, Z. Asfari, and J. Vicens: Supramol. Chem. 5, 97 (1995).

  19. S. Shinkai, K. Araki, T. Matsuda, N. Nishiyama, H. Ikeda, I. Takasu, and M. Iwamoto: J. Am. Chem. Soc. 112, 9053 (1990).

    Google Scholar 

  20. G. Weber and F.J. Farris: Biochemistry 18, 3075 (1979).

    Google Scholar 

  21. G. Weber and L.B. Young: J. Biol. Chem. 239, 1415 (1964).

    Google Scholar 

  22. M.A. Petti, T.J. Shepodd, Jr. R.E. Barrans, and D.A. Dougherty: J. Am. Chem. Soc. 110, 6825 (1988); P.C. Kearny, L.S. Mizoue, R.A. Kumpf, J.E. Forman, A.McCurdy, and D.A. Dougherty: J. Am. Chem. Soc. 115, 9907 (1993).

    Google Scholar 

  23. T. Jin: unpublished work.

  24. G. Cornelius, W. Gärtner, and D.H. Haynes: Biochemisty 13, 3052 (1974).

    Google Scholar 

  25. N.M. Baners, B. Costall, A.F. Fell, and R.J. Naylor: J. Pharm. Pharmacol. 39, 727 (1987).

    Google Scholar 

  26. M. Wakita, G. Nishimura, and M. Tamura: J. Biochem. (Tokyo) 118, 1151 (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jin, T. A New Fluorometric Method for the Detection of the Neurotransmitter Acetylcholine in Water Using a Dansylcholine Complex with p-Sulfonated Calix[8]arene. Journal of Inclusion Phenomena 45, 195–201 (2003). https://doi.org/10.1023/A:1024506714332

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024506714332

Navigation