Skip to main content
Log in

Energy partitioning for a crack under remote shear and compression

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

The true nature and characteristics of crack growth mechanisms in geologic materials have not been adequately described and are poorly understood. The process by which deformation energy is converted to slipping and growing cracks under compressive stresses is complex and difficult to measure. A hybrid technique employing moiré interferometry as an experimental boundary condition to a finite element method (FEM) was employed for through-cracked polycarbonate plates under remote shear and compression. Cohesive end zone and dislocation slip models are used to approximate experimentally observed displacement characteristics. Shear-driven linear elastic fracture mechanics displacement predictions are shown to be inadequate for initial displacement progression. Moiré displacement fields of relative crack face slip reveal a near tip cohesive zone. The pre-slip moiré-FEM stress fields reveal that the maximum crack tip tensile stress occurs at approximately 45 degrees and further infers cohesive zone presence. A J integral formulation uses moiré displacement data and accounts for stored energy along the crack before and after shear driven crack face slip. These energy-partitioning results track the transfer of stored energy along the crack face to the crack tip until the entire crack is actively slipping. These laboratory-scale experiments capture basic mechanical behavior and simulate thousands of years of large-scale geologic feature displacement history in just a few hours.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • ABAQUS (1997). Providence, RI., Hibbitt, Karlsson & Sorensen, Inc., Version 5.8. H.K.S. Publishing.

    Google Scholar 

  • Barenblatt, G. I. (1962). Advances in applied mechanics, Academic Press, London.

    Google Scholar 

  • Barker, D.B., Sanford, R.J. et al. (1985). Determining K and related stress field parameters from displacement fields. Exp. Mech. 25(4), 399–407.

    Article  Google Scholar 

  • Bobet, A. and Einstein, H.H. (1998). Fracture coalescence in rock-type materials under uniaxial and biaxial compression. Int. J. Rock Mech. Min. Sci. 35(7), 863–888.

    Article  Google Scholar 

  • Brown, S.R. (1993). Laboratory measurements of frictional slip on interfaces in a polycarbonate rock mass model. Albuquerque, Sandia National Laboratory.

    Google Scholar 

  • Buescher, B.J., Perry, K.E. et al. (1996). Frictional sliding in layered rock: laboratory-scale experiments. Albuquerque, Sandia National Laboratory.

    Book  Google Scholar 

  • Burgman, R., Pollard, D.D. et al. (1994). Slip distributions on faults: effects of stress gradients, inelastic deformation, heterogeneous host-rock stiffness, and fault interaction. J. Struct. Geol. 16(12), 1675–1690.

    Article  Google Scholar 

  • Chona, R. and Matsumoto, R. (1990). Determining crack tip stress field parameters from mixed mode displacement fields. Society for Experimental Mechanics Spring Meeting, Albuquerque, NM, SEM.

    Google Scholar 

  • Cowie, P.A. and Scholz, C.H. (1992). Physical explanation for the displacement-length relationships of faults using a post-yield fracture mechanics model. J. Struct. Geol. 14(10), 1133–1148.

    Article  Google Scholar 

  • Cowie, P.A. and Shipton, Z.K. (1998). Fault tip displacement gradients and process zone dimensions. J. of Struct. Geo. 20(8), 983–997.

    Article  Google Scholar 

  • Creath, K. (1993). Temporal phase measurement methods - Ch. 4. Interferogram analysis - digital fringe pattern measurement techniques. D.W. Robinson and G.T. Reid, Institute of physics publishing Ltd., 94–140.

  • Deason, V.A. and Ward, M.B. (1989). A compact portable diffraction grating interferometer. Laser Interferometry: Quantitative Analysis of Interferograms, Bellingham, WA.

    Google Scholar 

  • Dugdale, D.S. (1960). Yielding of steel sheets containing slits. J. Mech. Phys. Sol. 8, 100–104.

    Article  Google Scholar 

  • Epstein, J.S., Lloyd, W.R. et al. (1993). Biaxial load system for elasto-plastic interface testing. Novel Experimental Techniques in Fracture Mechanics. A. Shukla. New Orleans, LA, ASME Publications, New York, NY. 76, 237–246.

    Google Scholar 

  • Erdogan, F. and Sih, G.C. (1963). On the crack extension in plates under plane loading and transverse shear. Trans. Am. Soc. Mech. Engng. 85, 519–527.

    Google Scholar 

  • Greivenkamp, J.E. and Bruning, J.H. (1986). Phase shifting interferometry. Optical Shop Testing. D. Malacara. Hoboken, NJ, Wiley-Interscience.

    Google Scholar 

  • Hallam, S.D. and Ashby, M.F. (1990). Compressive brittle fracture and the construction of multi-axial failure maps. Deformation Processes in Minerals, Ceramics and Rocks. D.J. Barber and P.G. Meredith. London, Unwin Hyman LTD. 1, 435–578.

    Google Scholar 

  • Horii, H. and Nemat-Nasser, S. (1986). Brittle failure in compression: splitting, faulting and brittle-ductile transition. Phil. Trans. R. Soc. Lond. A319, 337–374.

    Article  Google Scholar 

  • Ida, Y. (1972). Cohesive force across the tip of longitudinal shear crack and Griffith’s specific surface energy. J. Geophys. Res. ???, 3796–3805.

    Google Scholar 

  • Ingraffea, A. (1987). Theory of crack initiation and propagation in rock. Fracture Mechanics of Rock, Ch. 4. B.K. Atkinson, Academic Press, 71–110.

    Chapter  Google Scholar 

  • Li, V.C. (1987). Mechanics of shear rupture applied to earthquake zones. Fracture Mechanics of Rocks. B.K. Atkinson. New York, Academic Press, 351–428.

    Chapter  Google Scholar 

  • Liechti, K.M. and Chai, Y.-S. (1992). Asymmetric shielding in interfacial fracture under in-plane shear. J.A.M. 59, 295–304.

    Google Scholar 

  • Martel, S. and Pollard, D.D. (1989). Mechanics of slip and fracture along small faults and simple strike slip fault zones in granite rock. J. Geophys. Res. 94(B7), 9417–9428.

    Article  Google Scholar 

  • Martel, S.J. (1997). Effects of cohesive zones on small faults and implications of secondary fracturing and fault trace geometry. J. Struct. Geol. 19(6), 835–847.

    Article  Google Scholar 

  • McClintock, F.A. (1962). Friction on Griffith’s cracks in rocks under pressure. U.S. National Congress on Applied Mechanics, ASME.

    Google Scholar 

  • Muraoka, H. and Kamata, H. (1983). Displacement distribution along minor fault traces. J. Struct. Geol. 5, 483–495.

    Article  Google Scholar 

  • Olsson, W.A. (1982). Experiments on a slipping crack. Geo. Res. Let. 9(8), 797–800.

    Article  Google Scholar 

  • Olsson, W.A. (1984). A dislocation model of the stress history dependence of frictional slip. J. Geophys. Res. 89(B11), 9271–9280.

    Article  Google Scholar 

  • Palmer, A.C. and Rice, J.R. (1973). The growth of slip surfaces in progressive failure of over consolidated clay. Roy. Soc. London.

    Google Scholar 

  • Perry, K.E., Epstein, J.S. et al. (1995). Frictional sliding on rock: preliminary experiments on LEXAN. 35th US National Rock Mechanics Symp., Lake Tahoe, CA/NV, A.A. Balkema.

    Google Scholar 

  • Post, D., Czarnek, R. et al. (1988). Deformation and strains in a thick adherend lap joint. Adhesively bonded joints: Testing, analysis and design, ASTM STP 981. W.S. Johnson, American Society for Testing and Materials, 107–118.

    Chapter  Google Scholar 

  • Post, D., Han, B. et al. (1994). High sensitivity moire: experimental analysis for mechanics and materials. Springer-Verlag, New York.

    Book  Google Scholar 

  • Rice, J.R. (1968). Fracture, an advanced treatise: mathematical fundamentals. Academic Press, New York

    Google Scholar 

  • Rice, J.R. (1980). The mechanics of earthquake rupture. Physics of the Earth’s Interior. A.M. Dziewonski. North Holland, 555–644.

    Google Scholar 

  • Rudnicki, J.W. (1980). Fracture mechanics applied to the earth’s crust. Ann. Rev. Earth Planet Sci 8, 489–525.

    Article  Google Scholar 

  • Ruiz, C., Post, D. et al. (1985). Moire interferometric studies of dovetail joints. J. Appl. Mech. 52(1), 109–114.

    Article  Google Scholar 

  • Shen, B., Stepheansson, O. et al. (1995). Coalescence of fractures under shear stress in experiments. J. Geophys. Res. 100(B4), 5975–5990.

    Article  Google Scholar 

  • Steffler, E.D. (1994). Subcritical crack growth behavior of waste isolation glass. Mechanical Engineering. Laramie, WY, University of Wyoming, 80.

    Google Scholar 

  • Steffler, E.D. (1999). Frictional sliding energy partitioning of a center crack loaded in remote shear and compression. Mechanical Engineering Department. Las Cruces, NM, New Mexico State University.

    Google Scholar 

  • Steffler, E.D., Coon, D.N. et al. (1992). Fracture statistics of waste isolation glass. Spectrum’ 92 Nuclear and Hazardous Waste Management, Boise, ID.

    Google Scholar 

  • Steffler, E.D., Coon, D.N. et al. (1994). Subcritical crack growth behavior of ISV waste isolation glass. Spectrum’ 94 nuclear and hazardous waste management, Atlanta, GA.

    Google Scholar 

  • Steffler, E.D., May, G.B. et al. (1992). Energy dissipation processes affecting crack growth in quasi-brittle materials. 33rd U.S. National Rock Mechanics Symposium, Sweeney Convention Center, Santa Fe, NM, A.A. Balkema Publishers.

    Google Scholar 

  • Steif, P.S. (1984). Crack extension under compressive loading. Eng. Frac. Mech. 20(3), 463–473.

    Article  Google Scholar 

  • Tada, H., Paris, P. et al. (1973). The stress analysis of cracks handbook, Del Research Company.

    Google Scholar 

  • Walsh, J.J. and Watterson, J. (1988). Analysis of the relationship between displacements and dimensions of faults. J. Struct. Geol. 10, 239–247.

    Article  Google Scholar 

  • Weertman, J. (1964). Continuum distributions of dislocations distributed on a fault with finite friction. Bull. Seismol. Soc. Am. 54, 1035–1058.

    Google Scholar 

  • Willemse, E.J.M. and Pollard, D.D. (1998). On the orientation and patterns of wing cracks and solution surfaces at the tips of a sliding flaw or fault. J. Geophys. Res. 103(B2), 2427–2438.

    Article  Google Scholar 

  • Williams, M.L. (1957). On the stress distribution at the base of a stationary crack. J.A.M. 24, 109–114.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steffler, E., Epstein, J. & Conley, E. Energy partitioning for a crack under remote shear and compression. International Journal of Fracture 120, 563–580 (2003). https://doi.org/10.1023/A:1025511703698

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025511703698

Navigation