Skip to main content
Log in

Phytol as one of the determinants of chlorophyll interactions in solution

  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Optical absorption and fluorescence parameters of chlorophyll a and the phytol-free chlorophyllide a, as well as of their Mg-depleted derivatives, were compared in a series of organic solvents. In contrast to prevailing opinion, the spectral properties of chlorophyll are not indifferent to the removal of phytol. The electronic absorption spectra of chlorophyll a and chlorophyllide a differ and display a different dependence on the nature of the solvent, which cannot be explained solely by the location of a charged carboxylic group in the proximity of the π– electron system. In fact, measurements in media of varying basicity show that deprotonation of the free carboxylic group in chlorophyllide, i.e., the presence of a negative point charge near the macrocycle, has no effect on pigment absorption spectra. Analysis of the solvent effect on the QY energies in terms of solvent polarity reveals that the phytyl moiety perturbs the spectral features of chlorophyll, mainly due to its interactions with the pigment solvation shell. The phytyl residue might also be thus partly involved in controlling the central metal ligation in chlorophylls. This influence of phytol on the spectral features of chlorophyll should be taken into account when comparing the spectra in solution with various spectral forms of chlorophyll in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agostiano A, Catucci L, Colafemmina G, Della Monica M and Scheer H (2000) Relevance of the chlorophyll phytyl chain on lamellar phase formation and organisation. Biophys Chem 84: 189-194

    Article  PubMed  CAS  Google Scholar 

  • Agostiano A, Catucci L, Colafemmina G and Scheer H (2002) Role of functional groups and surfactant charge in regulating chlorophyll aggregation in micellar solutions. J Phys Chem 106: 1446-1454

    CAS  Google Scholar 

  • Allen JP, Artz K, Lin X, Williams JC, Ivancich A, Albouy D, Mattioli TA, Fetsch A, Kuhn Mand Lubitz W(1996) Effects of hydrogen bonding to a bacteriochlorophyll-bacteriopheophytin dimer in reaction centers from Rhodobacter sphaeroides. Biochemistry 35: 6612-6619

    Article  PubMed  CAS  Google Scholar 

  • Bayliss NS and McRae EG (1954) Solvent effects in the spectra of acetone, crotonaldehyde, nitromethane and nitrobenzene. J Phys Chem 58: 1006-1011

    Article  CAS  Google Scholar 

  • Beems EM, Dubbelman TMAR, Lugtenburg J, van Best JA, Smeets MFMA and Boegheim JPJ (1987) Photosensitizing properties of bacteriochlorophyllin a and bacteriochlorin a, two derivatives of bacteriochlorophyll a. Photochem Photobiol 46: 639-643

    PubMed  CAS  Google Scholar 

  • Brown RG, Evans EH, Holderness SG, Manwaring J and May B (1983) Fluorescence spectra and decay time measurements on chlorophyll a and a non-aggregating analogue. Photobiol Photobiophys 5: 87-92

    CAS  Google Scholar 

  • Brown SB, Houghton JD and Hendry GA. 1991. Chlorophyll breakdown. In: Scheer H (ed) Chlorophylls, pp 465-489. CRC Press, Boca Raton, Florida

    Google Scholar 

  • Connolly JS, Janzen AF and Samuel EB (1982) Fluorescence lifetimes of chlorophyll a: Solvent, concentration and oxygen dependence. Photochem Photobiol 36: 559-563

    CAS  Google Scholar 

  • Cotton TM, Loach PA, Katz JJ and Ballschmiter K (1978) Studies of chlorophyll-chlorophyll and chlorophyll-ligand interactions by visible absorption and infrared spectroscopy at low temperatures. Photochem Photobiol 27: 735-749

    CAS  Google Scholar 

  • Davis RC, Ditson SL, Fentiman AF and Pearlstein RM (1981) Reversible wavelength shifts of chlorophyll induced by a point charge. J Am Chem Soc 103: 6823-6826

    Article  CAS  Google Scholar 

  • Deisenhofer J and Michel H (1993) Three-dimensional structure of the reaction center of Rhodopseudomonas viridis. In: Deisenhofer J and Norris J R (eds) The Photosynthetic Reaction Center, pp 541-558. Academic Press, San Diego, California

    Google Scholar 

  • Drews G (1996) Formation of the light-harvesting complex I (B870) of anoxygenic phototrophic purple bacteria. ArchMicrobiol 166: 151-159

    CAS  Google Scholar 

  • Eccles J and Honig B (1983) Charged amino acids as spectroscopic determinants for chlorophyll in vivo. Proc Natl Acad Sci USA 80: 4959-4962

    Article  PubMed  CAS  Google Scholar 

  • Engel N, Jenny TA, Mooser V and Gossauer A (1991) Chlorophyll catabolism in Chlorella protothecoides. Isolation and structure of red bilin derivative. FEBS Lett 293: 131-133

    Article  PubMed  CAS  Google Scholar 

  • Fiedor L, Gorman AA, Hamblett I, Rosenbach-Belkin V, Salomon Y, Scherz A and Tregub I (1993) A pulsed laser and pulse radiolysis study of amphiphilic chlorophyll derivatives with PDT activity toward malignant melanoma. Photochem Photobiol 58: 506-511

    PubMed  CAS  Google Scholar 

  • Fiedor L, Rosenbach-Belkin V and Scherz A (1992) The stereospecific interaction between chlorophylls and chlorophyllase. Possible implication for chlorophyll biosynthesis and degradation. J Biol Chem 267: 22043-22047 Fiedor L, Leupold D, Teuchner K, Voigt B, Hunter CN, Scherz A and Scheer H (2001) Excitation trap approach to analyze size and pigment-pigment coupling: reconstitution of LH1 antenna of Rhodobacter sphaeroides with Ni-substituted bacteriochlorophyll. Biochemistry 40: 3737-3747

    PubMed  CAS  Google Scholar 

  • Freer A, Prince S, Sauer K, Papiz M, Hawthornthwaite-Lawless A, McDermott G, Cogdell R and Isaacs NW (1996) Pigment- pigment interactions and energy transfer in the antenna complex of the photosynthetic bacterium Rhodopseudomonas acidophila. Structure 4: 449-462

    Article  PubMed  CAS  Google Scholar 

  • Gouterman M, Wagniere GH and Snyder LC (1972) Spectra of porphyrins. Part II. Four orbital model. JMol Spectr 11: 108-127

    Article  Google Scholar 

  • Gratton E, Jameson DM and Hall RD (1984) Multifrequency phase and modulation fluorometry. Annu Rev Biophys Bioeng 13: 105-124

    Article  PubMed  CAS  Google Scholar 

  • Hanson LK (1991) Molecular orbital theory of monomer pigments. In: Scheer H (ed) Chlorophylls, pp 993-1012. CRC Press, Boca Raton, Florida

    Google Scholar 

  • Hofmann E, Wrench PM, Sharples FP, Hiller RG, Welte W and Diederichs K (1996) Structural basis of light harvesting by carotenoids: peridinin-chlorophyll-protein from Amphidinium carterae. Science 272: 1788-1791

    PubMed  CAS  Google Scholar 

  • Holt AS and Jacobs EE (1954) Spectroscopy of plant pigments I. Ethyl chlorophyllides a and b and their pheophorbides. Am J Bot 41: 710-717

    Article  CAS  Google Scholar 

  • Hörtensteiner S (1999) Chlorophyll breakdown in higher plants and algae. Cell Mol Life Sci 56: 330-347

    Article  PubMed  Google Scholar 

  • Hynninen PH (1991) Protonation-deprotonation equilibria in tetrapyrroles. Part 1. Protonation titrations of 132-(demethoxycarbonyl)pheophytin a in methanolic hydrochloric acid by electronic absorption spectroscopy. J Chem Soc Perkin Trans 2: 669-678

    Google Scholar 

  • Katz JJ, Strain HH, Leussing DL and Dougherty RC (1968) Chlorophyll-ligand interactions from nuclear magnetic resonance studies. J Am Chem Soc 90: 784-791

    Article  Google Scholar 

  • Katz JJ, Shipman LL, Cotton TM and Janson TJ. 1978. Chlorophyll aggregation: coordination interactions in chlorophyll monomers, dimers, and oligomers. In: Dolphin D (ed) The Porphyrins, pp 401-458. Academic Press, New York

    Google Scholar 

  • Koepke J, Hu X, Muenke C, Schulten K and Michel H (1996) The crystal structure of the light-harvesting complex II (B800-850) from Rhodospirillum molischianum. Structure 4: 581-597

    Article  PubMed  CAS  Google Scholar 

  • Krawczyk S (1989) The effects of hydrogen bonding and coordination interaction in visible absorption and vibrational spectra of chlorophyll a. Biochim Biophys Acta 976: 140-149

    CAS  Google Scholar 

  • Lakowicz JR, Gratton E, Laczko G, Cherek H and Limkeman M (1984) Analysis of fluorescence decay kinetics from variablefrequency phase shift and modulation data. Biophys J 46: 463-477

    Article  PubMed  CAS  Google Scholar 

  • Limantara L, Sakamoto S, Koyama Y and Nagae H (1997) Effects of nonpolar and polar solvents on the QX and QY energies of bacteriochlorophyll a and bacteriopheophytin a. Photochem Photobiol 65: 330-337

    CAS  Google Scholar 

  • Liptay W (1974) Dipole moments and polarizabilities of molecules in excited electronic states. In: Linn EC (ed) Excited States. pp 129-229. Academic Press, New York.

    Google Scholar 

  • Matile P (2000) Biochemistry of indian summer: Physiology of autumnal leaf coloration. Exp Gerontol 35: 145-158

    Article  PubMed  CAS  Google Scholar 

  • Matile P, Ginsburg S, Schellenberg M and Thomas H (1987) Catabolites of chlorophyll in senescent leaves. J Plant Physiol 129: 219-228

    CAS  Google Scholar 

  • Mattioli TA, Lin X, Allen JP and Williams JC (1995) Correlation between multiple hydrogen bonding and alteration of the oxidation potential of the bacteriochlorophyll dimer of reaction centers from Rhodobacter sphaeroides. Biochemistry 34: 6142-6152

    Article  PubMed  CAS  Google Scholar 

  • McDermott G, Prince SM, Freer AA, Hawthornthwaite-Lawless AM, Papiz MZ, Cogdell RJ and Isaacs NW(1995) Crystal structure of an integral membrane light-harvesting complex from photosynthetic bacteria. Nature 374: 517-521

    Article  CAS  Google Scholar 

  • My´sliwa-Kurdziel B, Franck F and Strzalka K (1999) Analysis of fluorescence lifetime of protochlorophyllide and chlorophyllide in isolated etioplast membrane from multifriquency crosscorrelation fluorometry. Photochem Photobiol 70: 616-623

    Article  CAS  Google Scholar 

  • Nagae H, Kuki M, Cogdell RJ and Koyama Y (1994) Shifts of the 1Ag--1Bu+ electronic absorption of carotenoids in non-polar and polar solvents. J Phys Chem 101: 6750-6765

    Article  Google Scholar 

  • Nonomura Y, Igarashi S, Yoshioka N and Inoue H (1997) Spectroscopic properties of chlorophylls and their derivatives. Influence of molecular structure on the electronic state. Chem Phys 220: 155-166

    Article  CAS  Google Scholar 

  • Noy D, Fiedor L, Hartwich G, Scheer H and Scherz A (1998) Metal-substituted bacteriochlorophylls. 2. Changes in redox potentials and electronic transition energies are dominated by intramolecular electrostatic interactions. J Am Chem Soc 120: 3684-3693

    Article  CAS  Google Scholar 

  • Olsen JD, Sockalingum GD, Robert B and Hunter CN (1994) Modi-fication of a hydrogen bond to a bacteriochlorophyll a molecule in the light-harvesting 1 antenna of Rhodobacter sphaeroides. Proc Natl Acad Sci USA 91: 7124-7128

    Article  PubMed  CAS  Google Scholar 

  • Omata T and Murata N (1983) Separation of chlorophyll a, chlorophyll b and bacteriochlorophyll a by column chromatography with DEAE-Sepharose CL-6B and Sepharose CL-6B. Plant Cell Physiol 24: 1093-1100

    CAS  Google Scholar 

  • Onsager L (1936) Electric moments of molecules in liquids. J Am Chem Soc 58: 1486-1493

    Article  CAS  Google Scholar 

  • Pearlstein RM. 1987. Structure and exciton effects in photosynthesis. In: Amesz J (ed) Photosynthesis. pp 299-316. Elsevier, Amsterdam

    Google Scholar 

  • Reichardt C (1990) Solvents and solvent effects in organic chemistry. VCH, Weinheim, Germany

    Google Scholar 

  • Renge I and Avarmaa R (1985) Specific solvation of chlorophyll a: Sovent nucleophility, hydrogen bonding and steric effects on absorption spectra. Photochem Photobiol 42: 253-260

    CAS  Google Scholar 

  • Renge I, Molder U and Koppel I (1985) Specific and non-specific solvent effects on chlorophyll a visible spectral maxima. Spectrochim Acta 41A: 967-971

    Google Scholar 

  • Rosenbach-Belkin V, Chen L, Fiedor L, Tregub I, Pavlotsky F, Brumfeld V, Salomon Y and Scherz A (1996) Serine conjugates of chlorophyll and bacteriochlorophyll: photocytotoxicity in vitro and tissue distribution in mice bearing melanoma tumors. Photochem Photobiol 64: 174-181

    PubMed  CAS  Google Scholar 

  • Rosenbach-Belkin V, Fisher JRE and Scherz A (1991) Effect of nonexitonic interactions among the paired molecules on the Qy transition of bacteriochlorophyll dimers. Applications to the primary electron donors P-860 and P-960 in bacterial reaction centers. J Am Chem Soc 113: 676-678

    Article  CAS  Google Scholar 

  • Rosenbach-Belkin V, Chen L, Fiedor L, Salomon Y and Scherz A (1998) Chlorophyll and bacteriochlorophyll derivatives as photodynamic agents. In: Moser J G (ed) Photodynamic Tumor Therapy. 2nd and 3rd Generation Photosensitizers, pp 117-125. Harwood Academic Publishers, Amsterdam.

    Google Scholar 

  • Rüdiger W and Schoch S. 1991. The last steps of chlorophyll biosynthesis. In: Scheer H (ed) Chlorophylls, pp 451-464. CRC Press, Boca Raton, Florida

    Google Scholar 

  • Sauer K, Cogdell RJ, Prince MS, Freer A, Isaacs NW and Scheer H (1996) Structure-based calculations of the optical spectra of the LH2 bacteriochlorophyll-protein complex from Rhodopseudomonas acidophila. Photochem Photobiol 64: 564-576

    CAS  Google Scholar 

  • Scheer H (1991) Chlorophylls. CRC Press, Boca Raton, Florida

    Google Scholar 

  • Scherz A and Parson WW (1984) Exciton interactions in dimers of bacteriochlorophyll and related molecules. Biochim Biophys Acta 766: 666-678

    Article  CAS  Google Scholar 

  • Schiffer M and Norris JR. 1993. Structure and function of the photosynthetic reaction center of Rhodobacter sphaeroides. In: Deisenhofer J and J R Norris (eds) The Photosynthetic Reaction Center, pp 1-12. Academic Press, San Diego, California

    Google Scholar 

  • Senge MO and Smith KM. 1995. Biosynthesis and structures of the bacteriochlorophylls. In: Blankenship R E, Madigan MT and Bauer C E (eds) Anoxygenic Photosynthetic Bacteria, pp 137- 151. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Shimada Y, Tanaka A, Tanaka Y, Takabe T, Takabe T and Tsuji H (1990) Formation of chlorophyll-protein complexes during greening 1. Distribution of newly synthesized chlorophyll among apoproteins. Plant Cell Physiol 31: 639-647

    CAS  Google Scholar 

  • Spikes JD and Bommer JC. 1991. Chlorophyll and related pigments as photosensitizers in biology and medicine. In: Scheer H (ed) Chlorophylls, pp 1181-1204. CRC Press, Boca Raton, Florida

    Google Scholar 

  • Sundholm D (1999) Density functional theory calculations of the visible spectrum of chlorophyll a. Chem Phys Lett 302: 480-484

    Article  CAS  Google Scholar 

  • Vernon LP and Seely GR (1966) The Chlorophylls. Academic Press, New York

    Google Scholar 

  • Vladkova R (2000) Chlorophyll a self-assembly in polar solventwater mixtures. Photochem Photobiol 71: 71-83

    Article  PubMed  CAS  Google Scholar 

  • Watanabe T and Kobayashi M (1991) Electrochemistry of chlorophylls. In: Scheer H (ed) Chlorophylls, pp 287-315. CRC Press, Boca Raton, Florida

    Google Scholar 

  • Weiss C (1972) The pi electron structure and absorption spectra of chlorophylls in solution. J Mol Spectr 44: 37-80

    Article  CAS  Google Scholar 

  • Willstätter R and Stoll A (1913) deUntersuchungen über Chlorophyll. Springer Verlag, Berlin

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leszek Fiedor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fiedor, L., Stasiek, M., Myśliwa-Kurdziel, B. et al. Phytol as one of the determinants of chlorophyll interactions in solution. Photosynthesis Research 78, 47–57 (2003). https://doi.org/10.1023/A:1026042005536

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026042005536

Navigation