Skip to main content
Log in

Adsorption Behaviour of Basic Dyes on the Humic Acid Immobilized Pillared Clay

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

In this work, the adsorption of three basic dyes, namely methylene blue (MB), crystal violet (CV) and rhodamine B (RB) on the humic acid (HA) immobilized pillared clay (PILC) (HA-PILC) was studied. The adsorption capacity of dyes at 30 °C using HA–PILC was foundto be 2.6, 2.0 and 2.3 times greater than that using PILC for the removal of MB, CV and RB, respectively for an initial concentrationof 250 μmol dm-3. The adsorption process was pH dependent. The maximum dye adsorption on HA-PILC was observed at a pH of 5.0–7.0 (removal of 95.2–99.2% for MB, 92.7–97.3% for CV and 83.4–91.0% for RB) with no significant increase in removalsbeyond a pH of 7.0. The adsorption process could be best describedby the Urano and Tachikawa model showing that particle diffusion controlled adsorption. Equilibrium adsorption data were analyzed using the Langmuir, Freundlich and Redlich-Peterson isotherms. Dye adsorption was best described by the Freundlich model. The monolayer adsorption capacities of HA-PILC calculated using the Langmuir isotherm were 608.4, 484.7 and 413.1 μmol g-1 for MB, CV and RB, respectively. The linear Sheindorf-Rebhun-Sheintuch equation (Multicomponent Freundlich-type), was applied to the isotherm data obtained for each binary-solute combination of MB, CV and RB. The study showed that HA-PILC was an excellent media for the removal of basic dyes from aqueous solutions, based on adsorption kinetics and capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abraham, B. T. and Anirudhan, T. S.: 2001, 'Sorption recovery of metal ions from aqueous solution using humus-boehmite complex', Indian J. Chem. Technol. 6, 286–292.

    Google Scholar 

  • Albanis, T. A., Hela, D. G., Sakallaridas, T. M. and Denis, T. G.: 2000, 'Removal of dyes from aqueous solutions by adsorption on mixture of flyash and soil in batch and column techniques', Global Nest. The Int. J. 2, 237–244.

    Google Scholar 

  • Allen, S. J., McKay, G. and Khader, K. Y. H.: 1989, 'Equilibrium adsorption isotherms for basic dyes onto lignite', J. Chem. Tech. Biotechnol. 45, 291–302.

    Google Scholar 

  • Amin, S. and Jayson, G. G.: 1996, 'Humic substance uptake by hydrotalcites and PILCs', Wat. Res. 30, 299–306.

    Google Scholar 

  • Dyer, A. Gallerdo, T. and Roberts, C. W.: 1989, 'Preparation and Properties of Clays Pillared with Zirconium and their Use in HPLC Separations', in P. A. Jacobs and R. A. Van-Santa (eds) Zeolites, Facts, Figures Future, Elsevier Science, Amsterdam, pp. 389–398.

    Google Scholar 

  • Gemeay, A. H., El Sherbiny, A. S. and Zaki, A. B.: 2002, 'Adsorption and Kinetic Studies of the intercalation of some organic compounds onto Na+-montmorillonite', J. Colloid Interface Sci. 245, 116–125.

    Google Scholar 

  • Giles, C. H., McEwan, T. H., Nakhwa, S. N. and Smith, D.: 1960, 'Studies in adsorption XI. A system of classification of solution adsorption isotherms and its use in diagnosis of adsorption mechanisms and measurement of specific surface areas of solids', J. Chem Soc. 786, 3973–3993.

    Google Scholar 

  • Gupta, G. S. and Sharma, Y. C.: 1994, 'Environmental management of textile and metallic industrial effluents', J. Colloid. Interface Sci. 168, 118–124.

    Google Scholar 

  • Ho, Y. S. and McKay, G.: 2000, 'The kinetics of sorption of divalent metal ions onto sphagnum moss peat', Wat. Res. 34, 735–742.

    Google Scholar 

  • Huang, C. and Yang, Y.: 1995, 'Adsorption characteristics of Cu(II) on Humus-Kaolin complexes', Wat. Res. 29, 2455–2460.

    Google Scholar 

  • Lin, S. H.: 1993, 'Adsorption of disperse dyes by powdered activated carbon', J. Chem. Tech. Biotechnol. 57, 387–391.

    Google Scholar 

  • Markovska, L., Meshko, V., Noveski, V. and Marinkovski, M.: 2001, 'Solid diffusion control of the adsorption of basic dyes onto granulated activated carbon and natural zeolites in fixed bed columns', J. Serb. Chem. Soc. 66, 463–475.

    Google Scholar 

  • Mavros, P. Daniilidon, A. C., Lazardis, N. K. and Stergiov, L.: 1994, 'Colour removal from aqueous solutions Part I Flotation', Environ. Technol. 15, 601–616.

    Google Scholar 

  • McKay, G. Porter, J. F. and Prasad, G. R.: 1999, 'The removal of dye colours from aqueous solution by adsorption on low-cost materials', Water, Air, Soil Pollut. 114, 423–438.

    Google Scholar 

  • McKay, G., Ramprasad, G. and Monsli, F. P.: 1986, 'Equilibrium studies for the adsorption of dye stuffs from aqueous solutions by low-cost materials', Water, Air, Soil Pollut. 29, 273–281.

    Google Scholar 

  • Mortland, M. M., Mellor, J. L.: 1954, 'Conductometric titration of soils for cation exchange capacity', Soil Sci. Soc. Amer. Proc., 18, 363–364.

    Google Scholar 

  • Orlov, D. S.: 1992, Soil Chemistry, Oxford & IBH Publishing Company, New Delhi, 390 pp.

    Google Scholar 

  • Pagga, V. M. and Taeger, K.: 1994, 'Development of a method for adsorption of dye stuffs on activated sludge', Water Res. 28, 1051–1057.

    Google Scholar 

  • Peinemann, N. and Helmy, A. K.: 1999, 'Cation exchange capacities of safranin, toluidine and alizarin complexes with montmorillonite', Soil Sci. 164, 650–654.

    Google Scholar 

  • Ramakrishna, K. R. and Viraraghavan, T.: 1997, 'Dye removal using low-cost adsorbents', Water Sci. Technol. 36, 189–196.

    Google Scholar 

  • Redlich, O. and Peterson, D. L.: 1959, 'A useful adsorption isotherm', J. Phys. Chem. 63, 1024–1029.

    Google Scholar 

  • Rytwo, G., Tropp, D. and Serban, C.: 2002, 'Adsorption of diquat, paraquat and methyl green on sepiolite: experimental results and model calculations', Appl. Clay Sci. 20, 273–282.

    Google Scholar 

  • Sankaran, N. B. and Anirudhan, T. S.: 1999, 'Adsorption dynamics of phenol on activated carbon produced from Salvinia molesta Mitchell by single-step steam pyrolysis', Indian J. Eng. Mat. Sci. 6, 229–236.

    Google Scholar 

  • Schwarz, J. A., Driscoll, C. T. and Bhanot, A. K.: 1984, 'The zero point charge of silica-alumina oxide suspension', J. Colloid Interface Sci. 95, 55–61.

    Google Scholar 

  • Sekaran, G., Shanmugasundaram, K. A., Mariappan, M. and Raghavan, K. V.: 1995, 'Utilization of a solid waste generated in leather industry for removal of dye in aqueous solution', Indian. J. Chem. Technol. 2, 311–316.

    Google Scholar 

  • Sheindrof, C., Rebhun, M. and Sheintuch, M.: 1981, 'A Freundlich type multicomponent isotherm', J. Colloid Interface Sci. 79, 136–142.

    Google Scholar 

  • Shishtawy, R. M. and Melegy, A. A.: 2001, 'Geochemistry and utilization of montmorillonitic soil for cationic dye removal', Adsorp. Sci. Technol., 19, 609.

    Google Scholar 

  • Sorousadin, M., Hirracide, M., Kim, Y. and Kawaguchi, H.: 1993, 'Quantitative desorption of humic substances from Amberlite XAD resins with an alkaline solution of sodium dodecyl sulphate', Anal. Chem Acta. 281, 191–195.

    Google Scholar 

  • Subha, K. P., Raji, C. and Anirudhan, T. S.: 2001, 'Immobilization of heavy metals from aqueous solution using polyacrylamide grafted hydrous tin(IV) oxide gel having carboxylate functional groups', Water Res. 35, 300–310.

    Google Scholar 

  • Streat, M., Patrick, J. W. and Camporro Perez, M. J.: 1995, 'Sorption of phenol and parachlorophenol from water using conventional and novel activated carbons', Water Res. 29, 467–472.

    Google Scholar 

  • Urano, K. and Tachikawa, H.: 1991, 'Process development for the removal and recovery of phosphorus from wastewater by a new adsorbent - 2 Adsorption rates and breakthrough curves', Ind. Eng. Chem. Res. 30, 1897–1899.

    Google Scholar 

  • Vinod, V. P. and Anirudhan, T. S.: 2002a, 'Treatment of phenol rich aqueous solutions using surface modified pillared clay', Indian J. Eng. Mat. Sci. 9, 128–136.

    Google Scholar 

  • Vinod, V. P. and Anirudhan, T. S.: 2002b, 'Sorption of tannic acid by zirconium pillared clay', J. Chem. Tech. Biotechnol. 77, 92–101.

    Google Scholar 

  • Weber, W. J. and Morris, J. C.: 1963, 'Kinetics of adsorption on carbon from solutions', J. Sanit. Eng. Div. Am. Soc. Ccv. Engrs. 89, 31–39.

    Google Scholar 

  • Wu, F. C., Tseng, R. C. and Juang, R. S.: 2001, 'Kinetic modeling of liquid-phase adsorption of reactive dyes and metal ions on chitosan', Water Res. 35, 613–618.

    Google Scholar 

  • Yu-Liyeh, R.: 1995a, 'Colour removal from dye wastewaters by adsorption using powdered activated carbon. Mass transfer studies', J. Chem. Tech. Biotechnol. 63, 48–54.

    Google Scholar 

  • Yu-Liyeh, R.: 1995b, 'Colour difference measurements and colour removal from dye wastewaters using different adsorbents', J. Chem. Tech. Biotechnol. 63, 55–59.

    Google Scholar 

  • Zhou, J. L., Rowland, S., Mantouva, F. C. and Braven, J.: 1994, 'The formation of humic coatings on mineral particles under simulated estuarine conditions - A mechanistic study', Water Res. 25, 571–579.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. S. Anirudhan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vinod, V.P., Anirudhan, T.S. Adsorption Behaviour of Basic Dyes on the Humic Acid Immobilized Pillared Clay. Water, Air, & Soil Pollution 150, 193–217 (2003). https://doi.org/10.1023/A:1026145631713

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026145631713

Navigation