Skip to main content
Log in

Non-Commutative Algebras and Quantum Structures

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We present a survey on pseudo-effect algebras and pseudo MV-algebras, which generalize effect algebras and MV-algebras by dropping the assumption on commutativity. A non-commutative logic is nowadays used even in programming languages. We show when a pseudo-effect algebra E is an interval in a unital po-group. This is possible, e.g. if E satisfies a Riesz-type decomposition property, i.e. another kind of distributivity with respect to addition. Every pseudo MV-algebra is an interval in a unital ℓ-group. We study a case when compatibility can be expressed by a pseudo MV-structure, i.e. when E can be covered by blocks being pseudo MV-algebras. Finally, we study the state space of such structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Baudot, R. (2000). Non-commutative logic programming language NoClog. In Proceedings of the Short Presentation at Symposium LICS, Santa Barbara, pp. 3-9.

  • Birkhoff, G. and von Neumann, J. (1936). The logic of quantum mechanics. Annals of Mathematics 37, 823-834.

    Google Scholar 

  • Boole, G. (1967). An Investigation of the Laws of Thought, Macmillan, 1854, reprinted by Dover Press, New York.

    Google Scholar 

  • Cattaneo, G., Giuntini, R., and Pulmannovä, S. (2000). Pre-BZ and degenerate BZ posets: Applications to fuzzy stes and unsharp quantum theories. Foundations of Physics 30, 1765-1799.

    Google Scholar 

  • Chang, C. C. (1958). Algebraic analysis of many valued logics. Transactions of the American Mathematical Society 88, 467-490.

    Google Scholar 

  • Cignoli, R., D'Ottaviano, I. M. L., and Mundici, D. (2000). Algebraic Foundations of Many-Valued Reasoning, Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Di Nola, A., Georgescu, G., and Iorgulescu, A. (2002). Pseudo-BL-algebras, I, II. Multi Valued Logic 8, 673-714, 717-750.

    Google Scholar 

  • Dvureĉenskij, A. (2001). States on pseudo MV-algebras. Studia Logica 68, 301-327.

    Google Scholar 

  • Dvureĉenskij, A. (2002). Pseudo MV-algebras are intervals in-groups. Journal of the Australian Mathematical Society 72, 427-445.

    Google Scholar 

  • Dvureĉenskij, A. and Graziano, M. G. (in press). An invitation to economical test spaces and effect algebras. Soft Computing.

  • Dvureĉenskij, A. and Pulmannová, S. (2000). New Trends in Quantum Structures, Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Dvureĉenskij, A. and Vetterlein, T. (2001a). Pseudoeffect algebras. I. Basic properties. International Journal of Theoretical Physics 40, 685-701.

    Google Scholar 

  • Dvureĉenskij, A. and Vetterlein, T. (2001b). Pseudoeffect algebras. II. Group representation. International Journal of Theoretical Physics 40, 703-726.

    Google Scholar 

  • Dvureĉenskij, A. and Vetterlein, T. (2001c). Congruences and states on pseudo-effect algebras. Foundation Physics Letters 14, 425-446.

    Google Scholar 

  • Dvureĉenskij, A. and Vetterlein, T. (2003). On pseudo-effect algebras which can be covered by pseudo MV-algebras. Demonstratio Mathematica 36, 261-282.

    Google Scholar 

  • Foulis, D. J. (2002). Sequential probability models and transition probabilities. Atti del Seminario Matematico e Fisico dell'llniversit ä di Modena 50, 225-249.

    Google Scholar 

  • Foulis, D. J. and Bennett, M. K. (1993). Tensor products of orthoalgebras. Order 10, 271-282.

    Google Scholar 

  • Foulis, D. J. and Randall, C. H. (1972). Operational statistics. I. Basic concepts. Journal of Mathematical Physics 13, 1667-1675.

    Google Scholar 

  • Georgescu, G. and Iorgulescu, A. (2001). Pseudo-MV algebras. Multi Valued Logic 6, 95-135.

    Google Scholar 

  • Giuntini, R. and Greuling, H. (1989). Toward a formal language for unsharp properties. Foundations of Physics 19, 931-945.

    Google Scholar 

  • Gleason, A. M. (1957). Measures on the closed subspaces of a Hilbert space. Journal of Mathematical Mechanics 6, 885-893.

    Google Scholar 

  • Gudder, S. and Nagy, G. (2002). Sequentially independent effects. Proceedings of the American Mathematical Society 130, 1125-1130.

    Google Scholar 

  • Kolmogorov, A. N. (1933). Grundbegriffe der Wahrscheinlichkeitsrechnung, Berlin.

  • Kôpka, F. and Chovanec, F. (1994). D-posets. Mathematical Slovaca 44, 21-34.

    Google Scholar 

  • Pulmannovä, S. (2002). Compatibility and decompositins of effects. Journal of Mathematical Physics 43, 2817-2830.

    Google Scholar 

  • Rachůnek, J. (2002). A non-commutative generalization of MV-algebras. Czechoslovak Mathematics Journal 52, 255-273.

    Google Scholar 

  • Rieĉanoväa, Z. (2000). A generalization of blocks for lattice effect algebras. International Journal of Theoretical Physics 39, 231-237.

    Google Scholar 

  • Stern, A. (1994). The Quantum Brain, North-Holland, Elsevier, Amsterdam.

    Google Scholar 

  • Varadarajan, V. S. (1968). Geometry of Quantum Theory, Vol. 1, van Nostrand, Princeton, New Jersey.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dvurečenskij, A., Vetterlein, T. Non-Commutative Algebras and Quantum Structures. International Journal of Theoretical Physics 43, 1599–1612 (2004). https://doi.org/10.1023/B:IJTP.0000048806.69906.11

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:IJTP.0000048806.69906.11

Navigation