Skip to main content
Log in

Models in the Engineering Mechanics of Polymer-Matrix Composite Systems

  • Published:
International Applied Mechanics Aims and scope

Abstract

This paper discusses the complete system of structural, thermochemical, and mechanical-mathematical models that describe all the phenomena accompanying the formation of polymer-matrix composite materials (PCMs) and structures made of them. The issues of optimizing design engineering and modeling the postprocess behavior of PCM structures are addressed

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Kh. A. Arutyunyan, S. P. Davtyan, B. A. Rozenberg, and N. S. Enikolopyan, “Curing of ÉD-5 oligomer in the presence of amines under the condition of propagating reaction front,” Dokl. AN SSSR, 233, No. 3, 657–660 (1975).

    Google Scholar 

  2. V. I. Arbuzov and R. A. Turusov, “Numerical simulation of cured polymers,” Mekh. Komp. Mater., 31, No. 6, 846–851 (1995).

    Google Scholar 

  3. Yu. A. Afanas'ev, “Extreme temperature fields in heat treatment of cylinders made of reinforced composites,” Mekh. Komp. Mater., No. 5, 855–863 (1981).

    Google Scholar 

  4. A. I. Beil', G. G. Portnov, I. V. Sanina, and V. A. Yakushin, “Eliminating the initial thermal stresses in filament-wound composite articles by changing the winding angle throughout thickness.” Mekh. Komp. Mater., No. 6, 1069–1075 (1980).

    Google Scholar 

  5. V. V. Bolotin and K. S. Bolotina, “Calculating residual stresses and strains in filament-wound plastic articles,” Mekh. Polim., No. 1, 134–139 (1969).

    Google Scholar 

  6. V. V. Bolotin, “Delaminations in composite structures,” Mekh. Komp. Mater., No. 2, 239–255 (1984).

    Google Scholar 

  7. G. A. Vanin, Micromechanics of Composite Materials [in Russian], Naukova Dumka, Kiev (1985).

    Google Scholar 

  8. Yu. A. Gorbatkina, Adhesion Strength of Polymer–Fiber Systems [in Russian], Khimiya, Moscow (1987).

    Google Scholar 

  9. A. N. Guz, V. T. Tomashevskii, N. A. Shul'ga, and V. S. Yakovlev, Process-Induced Stresses and Strains in Composite Materials [in Russian], Vyshcha Shkola, Kiev (1988).

    Google Scholar 

  10. A. S. Zakhvatov, V. T. Tomashevskii, and V. S. Yakovlev, “Modeling the processes of isothermal curing and the influence of process factors on the integrity of articles made of polymer composite materials,” Mekh. Komp. Mater., No. 1, 153–166 (1990).

    Google Scholar 

  11. R. M. Christensen, Mechanics of Composite Materials, New York, Willey (1979).

    Google Scholar 

  12. G. V. Kuznetsov and N. V. Rudzinskaya, “Numerical analysis of the influence of heat–mass transfer in curing of polymer composite materials on the defect formation conditions,” Mekh. Komp. Mater. Konstr., 5, No. 2, 123–131 (1999).

    Google Scholar 

  13. N. A. Shul'ga and V. T. Tomashevskii (eds.), Process-Induced Stresses and Strains in Materials, Vol. 6 of the 12-volume series Mechanics of Composites [in Russian], A.S.K, Kiev (1997).

    Google Scholar 

  14. V. V. Moskvitin, Resistance of Viscoelastic Materials [in Russian], Nauka, Moscow (1972).

    Google Scholar 

  15. I. F. Obraztsov, V. T. Tomashevskii, V. N. Shalygin, and V. S. Yakovlev, “Scientific fundamentals and methods for control of the manufacture of polymer composites in engineering products,” IPP “Pravda Severa,” Arkhangelsk (2002).

    Google Scholar 

  16. S. G. Kulichikhin (comp.), Curing of Reactive Oligomers (Survey) [in Russian], NIITÉKhIM, Moscow (1987).

    Google Scholar 

  17. B. E. Pobedrya and I. L. Guzei, “Modeling composite processes,” Mekh. Komp. Mater., No. 1, 13–22 (1997).

    Google Scholar 

  18. B. E. Pobedrya, Mechanics of Composite Materials [in Russian], Izd. Moskovskogo Univ., Moscow (1984).

    Google Scholar 

  19. E. V. Rusinova and S. A. Vshivkov, “Phase transitions in polymer mixtures caused by an external mechanical field (review),” Vysokomolek. Soed., Ser. A, 39, No. 10, 1602–1610 (1997).

    Google Scholar 

  20. A. G. Savin, M. A. Boikin, and N. S. Obukhova, “A thermoviscous nonisothermal curing model for thermosetting binders,” Mekh. Komp. Mater., No. 5, 884–888 (1988).

    Google Scholar 

  21. L. I. Sedov, Continuum Mechanics [in Russian], Vol. 2, Nauka, Moscow (1970).

    Google Scholar 

  22. N. N. Sirota, “Analytical expression for kinetic curves of phase transformations,” Dokl. AN SSSR, 36, No. 6, 192–198 (1942).

    Google Scholar 

  23. Yu. V. Suvorova and V. S. Dobrynin, “Phenomenological and structural approaches in the fracture mechanics of fibrous materials,” in: Strength and Fracture, Vol. 1 of the series Mechanics of Composite Materials [in Russian], Zinatne, Riga (1993), pp. 42–51.

    Google Scholar 

  24. Yu. M. Tarnopol'skii, G. G. Portnov, and A. N. Beil', “Mechanics of filament-wound composites,” Izv. AN Latv. SSR, No. 12, 70–80 (1980).

    Google Scholar 

  25. Physical and Chemical Properties of Epoxy Binders and Epoxy-Cured Matrices [in Russian], Technical report, Soyuz Nauchn. Inzh. Obshch. SSSR, Leningrad (1989).

  26. V. T. Tomashevskii, O. G. Astashenko, and V. S. Yakovlev, Strength of a Submarine [in Russian], Voen.-Morsk. Academ., St. Petersburg (1994).

    Google Scholar 

  27. V. T. Tomashevskii, A. S. Zakhvatov, and V. S. Yakovlev, “Influence of delamination on the stability of cylindrical shells made of composites,” Mekh. Komp. Mater., No. 4, 683–691 (1991).

    Google Scholar 

  28. V. T. Tomashevskii, “Scientific fundamentals of the engineering mechanics of composite structures,” in: Mechanics and Scientific and Technical Progress: 4. Mechanics Applied to Technology [in Russian], Nauka, Moscow (1988), pp. 101–124.

    Google Scholar 

  29. V. T. Tomashevskii, V. N. Shalygin, and V. S. Yakovlev, “Modeling the conditions for the formation of process-induced defects in filament-wound polymer materials,” Mekh. Komp. Mater., No. 5, 895–900 (1980).

    Google Scholar 

  30. V. T. Tomashevskii and V. S. Yakovlev, “Influence of structural features of polymer composite materials on the stability of shells,” Mekh. Komp. Mater., No. 4, 626–632 (1980).

    Google Scholar 

  31. V. T. Tomashevskii and V. S. Yakovlev, “A generalized winding model for shells made of polymer composite materials,” Mekh. Komp. Mater., No. 5, 855–858 (1982).

    Google Scholar 

  32. V. T. Tomashevskii and V. S. Yakovlev, “The evolutionary form of the physical relations in engineering problems of the mechanics of composites,” Mekh. Komp. Mater., No. 5, 909–917 (1991).

    Google Scholar 

  33. V. T. Tomashevskii and V. S. Yakovlev, “Constitutive equations for polymeric systems in engineering problems,” Sudostr. Promyshl., 17, 45–51 (1991).

    Google Scholar 

  34. V. T. Tomashevskii and V. S. Yakovlev, “Fundamentals of the theory and optimization problems for design engineering of composite articles,” Mekh. Komp. Mater., No. 5, 888–899 (1984).

    Google Scholar 

  35. V. T. Tomashevskii and V. S. Yakovlev, “Structural instability of reinforcing fibers in winding of composites,” Mekh. Komp. Mater., No. 6, 1057–1063 (1983).

    Google Scholar 

  36. V. T. Tomashevskii and V. S. Yakovlev, “Control of residual stresses during manufacture of polymer composite materials,” Mekh. Komp. Mater., No. 2, 95–103 (1984).

    Google Scholar 

  37. V. T. Tomashevskii and V. S. Yakovlev, “Engineering problems in the mechanics of composites,” Prikl. Mekh., 20, No. 11, 3–20 (1984).

    Google Scholar 

  38. V. T. Tomashevskii and V. S. Yakovlev, “Engineering mechanics of composite systems: current state and development problems,” Vestn. St. Peterburg. Otd. RAEN, 3, 160–170 (1999).

    Google Scholar 

  39. V. T. Tomashevskii and V. S. Yakovlev, “The equations of process-stressed shells made of reinforced polymers,” Mekh. Komp. Mater., No. 2, 275–280 (1987).

    Google Scholar 

  40. N. A. Trufanov and A. A. Sukhodoeva, “The stress–strain state of a viscoelastic shell–mandrel system during filament winding,” Mekh. Komp. Mater. Konstr., 6, No. 4, 495–503 (2000).

    Google Scholar 

  41. R. A. Turusov, S. P. Davtyan, K.G. Shkadinskii, et al., “Mechanical phenomena accompanying the propagation of the hardening front,” Dokl. AN SSSR, 247, No. 1, 97–100 (1979).

    Google Scholar 

  42. R. A. Turusov and V. V. Metlov, “Stresses in frontal curing of composites,” Mekh. Komp. Mater., No. 6, 1079–1085 (1985).

    Google Scholar 

  43. R. A. Turusov, B. A. Rozenberg, and N. S. Enikolopyan, “Formation of stresses and cracks during frontal curing,” Dokl. AN SSSR, 280, No. 1, 90–94 (1981).

    Google Scholar 

  44. V. A. Sharkovskii, M. L. Kerber, and M. S. Akutin, “Residual stresses in a carbide-polymer–glass layer,” Mekh. Polim., No. 4, 623–627 (1974).

    Google Scholar 

  45. T. Fujii and M. Zako, Fracture Mechanics of Composite Materials [Russian translation], Mir, Moscow (1982).

    Google Scholar 

  46. V. S. Yakovlev, “The constitutive equations for cured media,” Problems of Universe Exploration. Developing Classical Methods in Natural Sciences [in Russian], Issue 17, NII Radioélectr. Kompl. RAN, St. Petersburg (1994), pp. 181–197.

    Google Scholar 

  47. V. S. Yakovlev, “Problems of engineering mechanics applied to ship structures,” in: Proc. Seminar on the Occasion of the 50th Anniversary of P. F. Papkovich [in Russian], Voen. Morsk. Academ., St. Petersburg (1996), pp. 48–58.

    Google Scholar 

  48. V. S. Yakovlev and A. B. Suvalov, “Modeling stress–strain and limiting states of polymer composites in manufacture of ship structures,” in: Abstracts of Papers Read at Conf. on Structural Ship Mechanics (Dedicated to Prof. P. F. Papkovich) [in Russian], TSNII im. Akad. A. N. Krylova, St. Petersburg, April 18–19 (2000), pp. 161–163.

    Google Scholar 

  49. V. S. Yakovlev and A. B. Suvalov, “Modeling manufacturing processes for polymer composites components in ship structures,” in: Proc. Int. Conf. MORINTEKh [in Russian], 3, MORINTEKh, St. Petersburg (1999).

    Google Scholar 

  50. V. S. Yakovlev, “The stability equations for process-stressed anisotropic shells,” Mekh. Komp. Mater., No. 2, 281–287 (1987).

    Google Scholar 

  51. V. S. Yakovlev, “An evolutionary model of deformation of reinforced polymers during manufacture,” in: 6th All-Union Congr. on Theoretical and Applied Mechanics [in Russian], Izd. AN SSSR, Tashkent (1986).

    Google Scholar 

  52. T. A. Bogetti and J. W. Gillisspie, Jr., “Process-induced stress and deformation in thick-section thermoset composite laminate,” J. Comp. Mater., 26, 626–660 (1992).

    Google Scholar 

  53. E. P. Calius, S. Y. Lee, and G. S. Springer, “Filament winding cylinders: Part II. Validation of the process model,” J. Comp. Mater., 24, 1299–1343 (1990).

    Google Scholar 

  54. Chen Haorna, Yang Zhenglin, and Tang Liming, “Numerical simulation of composite laminates during cure process,” Yingyong Lixue Xuebolo = Chin. J. Appl. Mech., 15, No. 3, 30–36 (1998).

    Google Scholar 

  55. H. T. Hahn and N. J. Pagano, “Curing stress in composite laminates,” J. Comp. Mater., 9, 91–105 (1975).

    Google Scholar 

  56. H. T. Hahn, “Residual stresses in polymer matrix composite laminates,” J. Comp. Mater., 10, 226–277 (1976).

    Google Scholar 

  57. L. N. Hjellming and J. S. Walker, “Thermal curing cycles for composite cylinders with thick walls and thermoset resins,” J. Comp. Mater., 23, 1048–1064 (1989).

    Google Scholar 

  58. Y. K. Kim and S. R. White, “Stress relaxation behavior of 3501-6 epoxy resin during cure,” Polymer Eng. Sci., 16, 2–16 (1997).

    Google Scholar 

  59. Y. K. Kim and S. R. White, “Viscoelastic analysis of processing-induced residual stresses in thick composite laminates,” Mech. Comp. Mater. Struct., 4, 361–387 (1997).

    Google Scholar 

  60. W. I. Lee, A. S. Loos, and G. S. Springer, “Heat of reaction. Degree of cure and viscosity of Hercules 3501-6 resin,” J. Comp. Mater., 16, 510–520 (1982).

    Google Scholar 

  61. S. Y. Lee and G. S. Springer, “Filament winding cylinders: Part I. Process model,” J. Comp. Mater., 24, 1270–1298 (1990).

    Google Scholar 

  62. S. Y. Lee and G. S. Springer, “Filament winding cylinders: Part III. Selection of the process variables,” J. Comp. Mater., 24, 1344–1366 (1990).

    Google Scholar 

  63. A. S. Loos and G. S. Springer, “Curing of epoxy matrix composites,” J. Comp. Mater., 17, 135–169 (1983).

    Google Scholar 

  64. J. M. Tang, W. I. Lee, and G. S. Springer, “Effects of cure pressure on resin flow. Voids and mechanical properties,” J. Comp. Mater., 21, 421–440 (1987).

    Google Scholar 

  65. B. W. Van Der Fliert and R. Van Der Hout, “Stress-driven diffusion in a drying liquid paint layer,” J. Appl. Math., 9, No. 5, 447–461 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tomashevskii, V.T., Yakovlev, V.S. Models in the Engineering Mechanics of Polymer-Matrix Composite Systems. International Applied Mechanics 40, 601–621 (2004). https://doi.org/10.1023/B:INAM.0000041391.28104.b7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:INAM.0000041391.28104.b7

Navigation