Skip to main content
Log in

The Role of Surface Chemistry on Spreading Kinetics of Molten Silicides on Silicon Carbide

  • Published:
Interface Science

Abstract

The spreading time for millimeter-sized droplets of nonreactive molten silicides on silicon carbide in high vacuum is several orders of magnitude higher than typical spreading times observed in nonreactive metal/ceramic systems. To explain this paradox, two types of experiments were performed: (i) wetting experiments for various nonreactive CuSi alloys on α-SiC single crystals using the sessile drop and dispensed drop techniques, with emphasis on determining the initial contact angle; and (ii) characterization of surface chemistry of SiC after different heat treatments in high-vacuum furnaces. It is shown that spreading kinetics in these systems are controlled by the kinetics of removing of wetting barriers present or developed in situ on SiC surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.G. Nicholas, Br. Ceram. Trans. J. 85, 144 (1986).

    Google Scholar 

  2. A. Mortensen, Mater. Sci. Eng. A 135, 1 (1991).

    Google Scholar 

  3. C. Rado, B. Drevet, and N. Eustathopoulos, Acta Mater. 48, 4483 (2000).

    Google Scholar 

  4. C. Rado, S. Kalogeropoulou, and N. Eustathopoulos, Mater. Sci. Eng., A 276, 195 (2000).

    Google Scholar 

  5. C. Rado, S. Kalogeropoulou, and N. Eustathopoulos, Acta Mater. 47, 461 (1999).

    Google Scholar 

  6. N. Eustathopoulos, M. Nicholas, and B. Drevet, in Pergamon Materials Series (Elsevier, Amsterdam, 1999) p. 54.

    Google Scholar 

  7. C. Rado, Ph.D. Thesis, Institut National Polytechnique de Grenoble, France, 1997.

  8. G. Hilya and Yu. Ivashcenko, Dopov. Akad. Nauk Ukr. RSR Ser B35, 69 (1973).

    Google Scholar 

  9. O. Dezellus, Ph.D. Thesis, Institut National Polytechnique De Grenoble, France, 2000.

  10. F. Sommer, D. Choi, and B. Predel, Z. Metallkd. 80, 367 (1989).

    Google Scholar 

  11. B. Hornetz, H. Michel, and J. Halbritter, J. Vac. Sci. Technol., A 13, 767 (1995).

    Google Scholar 

  12. L. Muehlhoff, W. Choyke, W. Bozack, and J. Yates, J. Appl. Phys. 60, 2842 (1986).

    Google Scholar 

  13. R. Kaplan, Surf. Sci. 215, 111 (1989).

    Google Scholar 

  14. O. Dezellus, F. Hodaj, C. Rado, J.N. Barbier, and N. Eustathopoulos, Acta Mater., 50, 979 (2002).

    Google Scholar 

  15. C. Rado, S. Kalogeropoulou, and N. Eustathopoulos, Mater. Res. Soc. Symp. Proc., 327, 319 (1994).

    Google Scholar 

  16. A. Tsoga, S. Agathopoulos, and P. Nikolopoulos, in Proc. Int. Conf. High Temperature Capillarity, edited by N. Eustathopoulos (Reproprint, Bratislava, 1994), p. 166.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Eustathopoulos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rado, C., Eustathopoulos, N. The Role of Surface Chemistry on Spreading Kinetics of Molten Silicides on Silicon Carbide. Interface Science 12, 85–92 (2004). https://doi.org/10.1023/B:INTS.0000012297.30968.02

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:INTS.0000012297.30968.02

Navigation