Skip to main content
Log in

Grain Boundary Phase Transitions and their Influence on Properties of Polycrystals

  • Published:
Interface Science

Abstract

Grain boundary (GB) phase transitions can change drastically the properties of polycrystals. The GB wetting phase transition can occur in the two-phase area of the bulk phase diagram where the liquid (L) and solid (S) phases are in equlibrium. Above the temperature of the GB wetting phase transition a GB cannot exist in equlibrium contact with the liquid phase. The experimental data on GB wetting phase transitions in numerous systems are analysed. The GB wetting tie-line can continue in the one-phase area of the bulk phase diagram as a GB solidus line. This line represents the GB premelting or prewetting phase transitions. The GB properties change drastically when GB solidus line is crossed by a change in the temperature or concentration. The experimental data on GB segregation, energy, mobility and diffusivity obtained in various systems both in polycrystals and bicrystals are analysed. In case if two solid phases are in equilibrium, the GB “solid state wetting” can occur. In this case the layer of the solid phase 2 has to substitute GBs in the solid phase 1. Such GB phase transition occurs if the energy of two interphase boundaries is lower than the GB energy in the phase 1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.G. Langdon, T. Watanabe, J. Wadsworth, M.J. Mayo, S.R. Nutt, and M. E. Kassner, Mater. Sci. Eng. A 166, 237 (1993).

    Google Scholar 

  2. B.B. Straumal and W. Gust, Mater. Sci. Forum 207–209, 59 (1996).

    Google Scholar 

  3. B. Straumal, D. Molodov, and W. Gust, J. Phase Equilibria 15, 386 (1994).

    Google Scholar 

  4. B. Straumal, T. Muschik, W. Gust, and B. Predel, Acta Metall. Mater. 40, 939 (1992).

    Google Scholar 

  5. L.-S. Chang, E. Rabkin, B.B. Straumal, S. Hofmann, B. Baretzky, and W. Gust, Defect Diff. Forum 156, 135 (1998).

    Google Scholar 

  6. B. Straumal, V. Semenov, V. Glebovsky, and W. Gust, Defect Diff. Forum 143–147, 1517 (1997).

    Google Scholar 

  7. B.B. Straumal, W. Gust, and T. Watanabe, Mater. Sci. Forum 294–296, 411 (1999).

    Google Scholar 

  8. F. Ernst, M.W. Finnis, A. Koch, C. Schmidt, B. Straumal, and W. Gust, Z. Metallk. 87, 911 (1996).

    Google Scholar 

  9. B.B. Straumal and L.S. Shvindlerman, Acta Metall. 33, 1735 (1985).

    Google Scholar 

  10. E.L. Maksimova, L.S. Shvindlerman, and B.B. Straumal, Acta Metall. 36, 1573 (1988).

    Google Scholar 

  11. J.W. Cahn, J. Chem. Phys. 66, 3667 (1977).

    Google Scholar 

  12. S. Dietrich, in Phase Transitions and Critical Phenomena, edited by C. Domb and J. H. Lebowitz (Academic, London, 1988), vol. 12, p. 2.

  13. D. Jasnov, Rep. Prog. Phys. 47, 1059 (1984).

    Google Scholar 

  14. G. de Gennes, Rev. Mod. Phys. 57, 827 (1985).

    Google Scholar 

  15. H. Kellay, D. Bonn, and J. Meunier, Phys. Rev. Lett. 71, 2607 (1993).

    Google Scholar 

  16. J.W. Schmidt and M.R. Moldover, J. Chem. Phys. 79, 379 (1983).

    Google Scholar 

  17. N. Eustathopoulos, L. Coudurier, J.C. Joud, and P. Desre, J. Crystal Growth 33, 105 (1976).

    Google Scholar 

  18. B. Straumal, W. Gust, and D. Molodov, Interface Sci. 3, 127 (1995).

    Google Scholar 

  19. B. Straumal, D. Molodov, and W. Gust, Mater. Sci. Forum 207– 209, 437 (1996).

    Google Scholar 

  20. B. Straumal, S. Risser, V. Sursaeva, B. Chenal, and W. Gust, J. Physique IV 5-C7, 233 (1995).

    Google Scholar 

  21. D.A. Molodov, U. Czubayko, G. Gottstein, L.S. Shvindlerman, B.B. Straumal, and W. Gust, Phil. Mag. Lett. 72, 361 (1995).

    Google Scholar 

  22. L.-S. Chang, B.B. Straumal, E. Rabkin, W. Gust, and F. Sommer, J. Phase Equilibria 18, 128 (1997).

    Google Scholar 

  23. L.-S. Chang, E. Rabkin, B. Straumal, P. Lejcek, S. Hofmann, and W. Gust, Scripta Mater. 37, 729 (1997).

    Google Scholar 

  24. E.I. Rabkin, V.N. Semenov, L.S. Shvindlerman, and B.B. Straumal, Acta Metall. Mater. 39, 627 (1991).

    Google Scholar 

  25. O.I. Noskovich, E.I. Rabkin, V.N. Semenov, L.S. Shvindlerman, and B.B. Straumal, Acta Metal. Mater. 39, 3091 (1991).

    Google Scholar 

  26. B.B. Straumal, O.I. Noskovich, V.N. Semenov, L.S. Shvindlerman, W. Gust, and B. Predel, Acta Metall. Mater. 40, 795 (1992).

    Google Scholar 

  27. B. Straumal, E. Rabkin, W. Lojkowski, W. Gust, and L.S. Shvindlerman, Acta Mater. 45, 1931 (1997).

    Google Scholar 

  28. E. Rabkin, D. Weygand, B. Straumal, V. Semenov, W. Gust, and Y. Bréchet, Phil. Mag. Lett. 7, 187 (1996).

    Google Scholar 

  29. V.G. Glebovsky, B.B. Straumal, V.N. Semenov, V.G. Sursaeva, and W. Gust, High Temp. Mater. Proc. 13, 67 (1994).

    Google Scholar 

  30. I. Apykhtina, B. Bokstein, A. Khusnutdinova, A. Peteline, and S. Rakov, Def. Diff. Forum 194–199, 1331 (2001).

    Google Scholar 

  31. J.W. Cahn, J. Phys. Colloq. 43-C6, 199 (1982).

    Google Scholar 

  32. D. Weygand, Y. Bréchet, E. Rabkin, B. Straumal, and W. Gust, Phil. Mag. Lett. 76, 133 (1997).

    Google Scholar 

  33. L.-S. Chang, E. Rabkin, B.B. Straumal, B. Baretzky, and W. Gust, Acta Mater. 47, 4041 (1999).

    Google Scholar 

  34. B. Straumal, N.E. Sluchanko, and W. Gust, Def. Diff. Forum 188–190, 185 (2001).

    Google Scholar 

  35. B.B. Straumal, S.I. Prokofjev, L.-S. Chang, N.E. Sluchanko, B. Baretzky, W. Gust, and E. Mittemeijer, Def. Diff. Forum 194– 199, 1343 (2001).

    Google Scholar 

  36. J. Schölhammer, B. Baretzky, W. Gust, E. Mittemeijer, and B. Straumal, Interf. Sci. 9, 43 (2001).

    Google Scholar 

  37. T.B. Massalski et al. (eds.), Binary Alloy Phase Diagrams (ASM International, Materials Park, 1993).

    Google Scholar 

  38. M.J. Iribarren, O.E. Agüero, and F. Dyment, Def. Diff. Forum. 194–199, 1211 (2001).

    Google Scholar 

  39. Ya.E. Geguzin, Physics of Sintering, 2nd edition (Nauka, Moscow, 1984) (in Russian).

    Google Scholar 

  40. V.N. Eremenko, Yu.V. Naidich, and I.A. Lavrinenko, Sintering in the Presence of Liquid Phase (Naukova Dumka, Kiev, 1968) (in Russian).

    Google Scholar 

  41. V.V. Panichkina, M.M. Sirotjuk, and V.V. Skorokhod, Poroshk. Metall. 6, 21 (1982) (in Russian).

    Google Scholar 

  42. V.V. Skorokhod, V.V. Panichkina, and N.K. Prokushev, Poroshk. Metall. 8, 14 (1986), (in Russian).

    Google Scholar 

  43. V.V. Skorokhod, Yu.M. Solonin, N.I. Filippov, and A.N. Poshin, Poroshk. Metall. 9, 9 (1983) (in Russian).

    Google Scholar 

  44. W.J. Huppmann and H. Riegger, Acta Metall. 23, 965 (1975).

    Google Scholar 

  45. G. Gottstein and L.S. Shvindlerman, Grain Boundary Migration in Metals (Boca Raton etc., CRC Press, 1999).

  46. H. Gleiter and B. Chalmers, High-Angle Grain Boundaries (Oxford etc., Pergamon Press, 1972).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Straumal, B., Baretzky, B. Grain Boundary Phase Transitions and their Influence on Properties of Polycrystals. Interface Science 12, 147–155 (2004). https://doi.org/10.1023/B:INTS.0000028645.30358.f5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:INTS.0000028645.30358.f5

Navigation