Skip to main content
Log in

Silk fibroin modified porous poly(ε-caprolactone) scaffold for human fibroblast culture in vitro

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

In order to develop scaffolds with improved biocompatibility for cell culture, hybrid scaffolds were fabricated by modifying poly(ε-caprolactone) (PCL) with silk fibroin (SF) in a porous structure. Scanning electronic microscopy revealed that the morphology of the PCL–SF hybrid scaffold was affected by the concentration of the SF solution. Availability of SF on the surface and the conformational transition induced by methanol treatment were proved by attenuated total reflection Fourier transformed infrared spectroscopy (ATR–FTIR), and wettability of the hybrid scaffold was greatly improved. To evaluate scaffold biocompatibility, human fibroblasts were cultured on the hybrid scaffold with the unmodified PCL scaffold as control. An MTT assay indicated that although fewer cells were initially held on the hybrid scaffold after one day of culture, comparable cell numbers were achieved after four days and significantly more cells proliferated on the hybrid after seven days. The cell morphology also indicated that the PCL–SF hybrid scaffold was favorable for cell culture. This study suggests that surface modification with SF would be an effective way to improve the biocompatibility of PCL, facilitating its application in practical tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Dobkowski, R. Kołos, J. KamiDski and H. M. KowalczyDska, J. Biomed. Mater. Res. 47 (1999) 234.

    Google Scholar 

  2. M. B. Yaylaoglu, C. Yildiz, F. Korkusuz and V. Hasirci, Biomaterials 20 (1999) 1513.

    Google Scholar 

  3. B. K. Mann and J. L. West, J. Biomed. Mater. Res. 60 (2002) 86.

    Google Scholar 

  4. X. B. Yang, H. I. Roach, N. M. P. Clarke, S. M. Howdle, R. Quirk, K. M. Shakesheff and R. O. C. Oreffo, Bone 29 (2001) 523.

    Google Scholar 

  5. J. H. Lee, Y. M. Ju and D. M. Kim, Biomaterials 21 (2000) 683.

    Google Scholar 

  6. J. C. Lin, Y. F. Chen and C. Y. Chen, ibid. 20 (1999) 1439.

    Google Scholar 

  7. G. Chen, T. Ushida and T. Tateishi, J. Biomed. Mater. Res.. 51 (2000) 273.

    Google Scholar 

  8. A. Ide, M. Sakane, G. Chen, H. Shimojo, T. Ushida, T. Tateishi, Y. Wadano and Y. Miyanagal, Mater. Sci. Eng. C 17 (2001) 95.

    Google Scholar 

  9. K. Inouye, M. Kurokawa, S. Nishikawa and M. Tsukada, J. Biochem. Biophys. Meth. 37 (1998) 159.

    Google Scholar 

  10. G. H. Altman, F. Diaz, C. Jakuba, T. Calabro, R. L. Horan, J. Chen, H. Lu, J. Richmond and D. L. Kaplan, Biomaterials 24 (2003) 401.

    Google Scholar 

  11. M. Santin, A. Motta, G. Freddi and M. Cannas, J. Biomed. Mater. Res. 46 (1999) 382.

    Google Scholar 

  12. G. H. Altman, R. L. Horan, H. H. Lu, J. Moreau, I. Martin, J. C. Richmond and D. L. Kaplan, Biomaterials 23 (2002) 4132.

    Google Scholar 

  13. P. Petrini, C. Parolari and M. C. Tanzi, J. Mater. Sci. Mater. Med. 12 (2001) 849.

    Google Scholar 

  14. K. Cai, K. Yao, S. Lin, Z. Yang, X. Li, H. Xie, T. Qing and L. Gao, Biomaterials 23 (2002) 1153.

    Google Scholar 

  15. H. L. Khor, K. W. Ng, J. T. Schantz, Toan-Thang Phan, T. C. Lim, S. H. Teoh and D. W. Hutmacher, Mater. Sci. Eng. C 20 (2002) 71.

    Google Scholar 

  16. Y. Zhu, C. Gao and J. Shen, Biomaterials 23 (2002) 4889.

    Google Scholar 

  17. X. Chen, Z. Z. Shao, N. S. Marinkovic, L. M. Miller, P. Zhou and M. R. Chance, Biophys. Chem. 89 (2001) 25.

    Google Scholar 

  18. A. G. Mikos, A. J. Thorsen, L. A. Czerwonka, Y. Bao and R. Langer, Polymer 35 (1995) 1068.

    Google Scholar 

  19. G. Zund, Q. Ye, S. P. Hoerstrup, A. Schoeberlein, A. C. Schmid, J. Grunenfelder, P. Vogt and M. Turina, Eur. J. Cardio-thoracic Surg. 15 (1999) 519.

    Google Scholar 

  20. O. N. Tretinnikov, Langmuir 17 (2001) 7406.

    Google Scholar 

  21. J. Yang, J. Bei and S. Wang, Biomaterials 23 (2002) 2607.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, G., Zhou, P., Mei, N. et al. Silk fibroin modified porous poly(ε-caprolactone) scaffold for human fibroblast culture in vitro. Journal of Materials Science: Materials in Medicine 15, 671–677 (2004). https://doi.org/10.1023/B:JMSM.0000030208.89523.2a

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JMSM.0000030208.89523.2a

Keywords

Navigation