Skip to main content
Log in

Zr K-Edge XAS and 29Si MAS NMR Studies on Hexagonal Mesoporous Zirconium Silicate

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Hexagonal mesoporous silicate (HMS) molecular sieve containing zirconium species (Zr-HMS) has been synthesized using a neutral template of hexadecylamine with ethanol and water. A disordered channel structure with a uniform diameter of 44.1 Å was confirmed by powder X-ray diffraction after calcination. From N2 adsorption/desorption measurement, it is found that Zr-HMS has a very high surface area of about 910 m2/g (BET) and a mesopore with a size of 21 Å (BJH). According to the X-ray absorption spectroscopy at the Zr K-edge, it is confirmed that Zr atoms are coordinated by six oxygen neighbors with a distance of 2.13 Å, which is shorter than the (Zr—O) bond distance found in ZrO2 or ZrOCl2·8H2O. The 29Si MAS-NMR spectrum for Zr-HMS shows two additional peaks around −94.6 and −107.2 ppm due to the Q3Zr and Q4Zr components, respectively, besides three peaks at −91.1, −101.5, and −111.3 ppm due to the silicate network. The relation between the pore and crystal structures and the local environment around Zr is discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.T. Kresge, M.E. Leonowicz, W.J. Roth, J.C. Vartuli, and J.S. Beck, Nature 359, 710 (1992).

    Google Scholar 

  2. J.S. Beck, J.C. Vartuli, W.J. Roth, M.E. Leonowicz, C.T. Kresge, K.D. Schmitt, C.T.-W. Chu, D.H. Olson, E.W. SHEPPARD, S.B. McCullen, J.B. Higgins, and J.L. Schlenker, J. Am. Chem. Soc. 114, 10834 (1992).

    Google Scholar 

  3. Q. Huo, D.I. Margolese, U. Ciesla, P. Feng, T.E. Gier, P. Sieger, R. Leon, P.M. Petroff, F. Sch¨uth, and G.D. Stucky, Nature 368, 317 (1994).

    Google Scholar 

  4. M.J. Hudson and J.A. Knowles, J. Mater. Chem. 6, 89 (1996).

    Google Scholar 

  5. T. Sun and J.Y. Ying, Nature 389, 704 (1997).

    Google Scholar 

  6. C. Saúl, E.H. Jamel, B.P. Aurelio, B.P. Daniel, M.M. Dolores, and A. Pedro, Solid State Science 2, 513 (2000).

    Google Scholar 

  7. U. Ciesla, D. Demuth, R. Leon, P. Petroff, G. Stucky, K. Unger, and F. Schuth, J. Chem. Soc. Commun. 20, 2083 (1995).

    Google Scholar 

  8. F.L. Chen and M.L. Liu, Chem. Commun. 18, 1829 (1999).

    Google Scholar 

  9. R. Mokaya and W. Jones, J. Chem. Soc., Chem. Commun. 981 (1996).

  10. Z. Zhang, Y. Han, F.S. Xiao, S. Qiu, L. Zhu, R. Wang, Y. Yu, Z. Zhang, B. Zou, Y. Wang, H. Sun, D. Zhao, and Y. Wei, J. Am. Chem. Soc. 123, 5014 (2001).

    Google Scholar 

  11. P.T. Tanev, M. Chibwe, and T.J. Pinnavaia, Nature 368, 321 (1994).

    Google Scholar 

  12. D.J. Jones, J.J. Jimenez, A.J. Lopez, P.M. Torres, and P.O. Pastor, Chem. Commun. 431 (1997).

  13. M.L. Occelli, S. Biz, and A. Auroux, Appl. Catal. A 183, 231 (1999).

    Google Scholar 

  14. J.H. Choy, D.K. Kim, J.C. Park, S.N. Choi, and Y.J. Kim, Inorg. Chem. 36, 189 (1997).

    Google Scholar 

  15. A. Mosset and J. Galy, in Synchrotron Radiation in Chemistry and Biology (Springer-Verlag, Berlin, 1988).

    Google Scholar 

  16. J.H. Choy, J.H. Park, and J.B. Yoon, J. Phys. Chem. 102, 5991 (1998).

    Google Scholar 

  17. P.T. Tanev and T.J. Pinnavaia, Science 267, 865 (1995).

    Google Scholar 

  18. J.A. Bearden and A.F. Burr, Rev. Modern Physics. 39, 125 (1967).

    Google Scholar 

  19. M. Nomura and A. Koyama, KEK Internal 93(1) (1993).

  20. B.K. Teo, Basic Principle of EXAFS (Springer-Verlag, Berlin, 1986).

    Google Scholar 

  21. E.A. Stern, M. Newville, B. Ravel, Y. Yacoby, and D. Haskel, Physica B 208/209, 117 (1995).

    Google Scholar 

  22. J.J. Rehr, J. Mustre de leon, S.I. Zabinsky, and R.C. Albers, J. Am. Chem. Soc. 113, 5135 (1991).

    Google Scholar 

  23. P.A. O'day, J.J. Rehr, S.I. Zabinsky, and G.E. Brown Jr., J. Am. Chem. Soc. 116, 2938 (1994).

    Google Scholar 

  24. S.A. Bagshaw, E. Prouzet, and T.J. Pinnavaia, Science 269, 1242 (1995).

    Google Scholar 

  25. A. Tuel and S. Gontier, Chem. Mater. 8, 114 (1996).

    Google Scholar 

  26. E.P. Barrett, L.G. Joyner, and P.P. Halenda, J. Am. Chem. Soc. 73, 373 (1951).

    Google Scholar 

  27. J.B. Yoon, Ph. D. Thesis, Seoul National Univ., Seoul, Aug. 1998.

  28. C.J. Howard, R.J. Hill, and B.E. Reichert, Acta Crystallogr. B44, 116 (1988).

    Google Scholar 

  29. A. Clearfield and P. A. Vaugham, Acta Crystallogr. 9, 555 (1956).

    Google Scholar 

  30. R.D. Shannon, Acta Crystallogr. A32, 751 (1976).

    Google Scholar 

  31. W. Zhang, M. Froba, J. Wang, P.T. Tanev, J. Wong, and T.J. Pinnavaia, J. Am. Chem. Soc. 118, 9164 (1996).

    Google Scholar 

  32. M. Lipsicas, R.H. Raythatha, T.J. Pinnavaia, I.D. Johnson, R.F. Giese Jr., P.M. Costanzo, and J.L. Robert, Nature 309, 604 (1984).

    Google Scholar 

  33. Z.Y. Yuan, S.Q. Liu, T.H. Chen, J.Z. Wang, and H.X. Li, J. Chem. Soc. Commun. 9, 973 (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choy, JH., Yoon, JB., Jung, H. et al. Zr K-Edge XAS and 29Si MAS NMR Studies on Hexagonal Mesoporous Zirconium Silicate. Journal of Porous Materials 11, 123–129 (2004). https://doi.org/10.1023/B:JOPO.0000038007.82949.e1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOPO.0000038007.82949.e1

Navigation