Skip to main content
Log in

Improvement on Hydrophilic and Hydrophobic Properties of Glass Surface Treated by Nonthermal Plasma Induced by Silent Corona Discharge

  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

A fundamental study was conducted to investigate the improvement of the hydrophilic and hydrophobic properties of the glass surface using the atmospheric-pressure nonthermal plasma. The plasma was induced between the two parallel electrodes with a dielectric barrier using an AC 60Hz high voltage power supply. The objective is to demonstrate the possibility of the elimination of the windshield wiper from automobiles. Two approaches were undertaken for modifying the glass surface: one is hydrophilic approach using plasma alone and the other is hydrophobic approach using the combination of hydrophobic chemical and nonthermal plasma. The plasma application provided excellent hydrophilic properties (less than 4° of contact angle). However, the durability did not last for more than one day. The combination of hydrophobic Tri Alkoxy Silane (TAS) chemical coating and nonthermal plasma showed an excellent hydrophobic property and extended durability, more than five times more durable compared with TAS alone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. W. W. Balwanz, Surface Contamination; Genesis, Detection and Contr. 1, 255-269 (1979).

    Google Scholar 

  2. H. Yasuda, J. Polymer Sci.: Macromol. Rev. 16, 199-293 (1981).

    Google Scholar 

  3. M. Yekta-Fard and A. B. Ponter, Phys. Chem. Liq. 15, 19-30 (1985).

    Google Scholar 

  4. T. Yokoyama, M. Kogoma, T. Moriwaki, and S. Okazaki, J. Phys. D: Appl. Phys. 23, 1125-1128 (1990).

    Google Scholar 

  5. Y. Qiu, S. Deflon, and P. Schwartz, J. Adhesion Sci. Tech. (K. L. Mittal and W. J. Ooji, Special Issue on Plasma Surface Modification) 7, 1041-1049 (1993).

  6. N. Inagaki, S. Takasa, and H. Kawai, J. Adhesion Sci. Tech. (K. L. Mittal, and W. J. Ooji, Special Issue on Plasma Surface Modification) 7, 279-291 (1993).

  7. T. Yamamoto, J. R. Newsome, and D. S. Ensor, IEEE Trans. Ind. Appl. 31, 494-499 (1995).

    Google Scholar 

  8. J. S. Chang, P. A. Lawless, and T. Yamamoto, IEEE Trans. Plasma Sci. 19, 1152-1166 (1991).

    Google Scholar 

  9. S. Masuda and H. Nakao, Proc. IEEE Ind. Appl. Soc. Annual Meeting, Denver, CO, 1173-1182 (1986).

  10. J. S. Clements, A. Mizuno, W. C. Finney, and R. H. Davies, IEEE Trans. Ind. Appl. 25, 62-69 (1989).

    Google Scholar 

  11. S. Masuda, Y. Wu, T. Urabe, and Y. Ono, Proc. 3rd Int. Conf. on Electrostatic Precipitation, Abano, Italy, October (1987).

  12. H. H. Kim, K. Tsunoda, K. Shimizu, S. Tanaka, T. Yamamoto, and A. Mizuno, J. Adv. Oxidat. Technol. 4, 347-351 (1999).

    Google Scholar 

  13. T. Yamamoto, M. Okubo, K. Hayakawa, and K. Kitaura, IEEE Trans. Ind. Appl. 37, 1492-1498 (2001).

    Google Scholar 

  14. T. Kuroki, M. Takahashi, M. Okubo, and T. Yamamoto, IEEE Trans. Ind. Appl., 38, 1204-1209 (2002).

    Google Scholar 

  15. A. Mizuno, K. Shimizu, K. Yanagihara, K. Kinoshita, K. Tsunoda, H. H. Kim, and S. Katsura, Proc. IEEE Ind. Appl. Soc. Annual Meeting, San Diego, CA, 1808-1812 (1996).

  16. T. Oda, T. Kato, T. Takahshi, and K. Shimizu, IEEE Trans. Ind. Appl. 34, 268-272 (1998).

    Google Scholar 

  17. S. E. Thomas, A. R. Martin, D. Raybone, J. T. Shawcross, K. L. Ng, and P. Beech, Nonthermal plasma aftertreatment of particulates—Theoretical limits and impact on reactor design, presented at International Spring Fuels and Lubricants Meeting and Exposition, Paris, France, June 19–22, 1-13 (2000).

  18. T. Yamamoto, K. Ramanathan, P. A. Lawless, D. S. Ensor, J. R. Newsome, N. Plaks, and G. H. Ramsey, IEEE Trans. Ind. Appl. 28, 528-534 (1992).

    Google Scholar 

  19. T. Yamamoto, P. A. Lawless, M. K. Owen, D. S. Ensor, and C. Boss, Non-Thermal Plasma Techniques for Pollution Control, Part B: NATO ASI Series, Springer-Verlag, Berlin, 34B, 223-237 (1993).

    Google Scholar 

  20. T. Oda, T. Takahashi, and K. Yamaji, Proc. IEEE Ind. Appl. Soc. Annual Meeting, Pittsburgh, PA, CD-ROM (2002).

  21. T. Yamamoto and C. L. Yang, Proc. IEEE Ind. Appl. Soc. Annual Meeting, Saint Louis, MO, October 12–16, 1877-1883 (1998).

  22. M. Okubo, G. Tanioka, T. Kuroki, and T. Yamamoto, IEEE Trans. Ind. Appl. 38, 1196-1203 (2002).

    Google Scholar 

  23. M. Okubo, T. Kuroki, H. Kametaka, and T. Yamamoto, IEEE Trans. Ind. Appl. 37, 1447-1455 (2001).

    Google Scholar 

  24. M. Okubo, T. Yamamoto, T. Kuroki, and H. Fukumoto, IEEE Trans. Ind. Appl., 37, 1505-1511 (2001).

    Google Scholar 

  25. M. Okubo, J. Mine, T. Kuroki, T. Yamamoto, N. Saeki, and S. Kataoka, Proc. 2nd Asia Aerosol Conf., Pusan, Korea, July 1–4, 361-362 (2001).

  26. T. Yamamoto, A. Yoshizaki, T. Kuroki, and M. Okubo, Proc. 1st Joint Meeting of IEEE Ind. Appl. Soc. EPC and ESA, Little Rock, AR, 2003 (in printing).

  27. T. Minami and S. Tadanaga, Surf. Tech. 48, 298-303 (1997).

    Google Scholar 

  28. S. Sakuhana, Fundamentals and Applications for Glass Surface, Uchida Rokaku-Ho Publ., Tokyo, 103-107 (1985) (in Japanese).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiaki Yamamoto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamamoto, T., Okubo, M., Imai, N. et al. Improvement on Hydrophilic and Hydrophobic Properties of Glass Surface Treated by Nonthermal Plasma Induced by Silent Corona Discharge. Plasma Chemistry and Plasma Processing 24, 1–12 (2004). https://doi.org/10.1023/B:PCPP.0000004878.61688.4d

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:PCPP.0000004878.61688.4d

Navigation