Skip to main content
Log in

Macromolecular lignin replication: A mechanistic working hypothesis

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

At the time of the first realization that the last step in lignin biosynthesis involves lignol radical coupling, it was difficult to envisage how such a process could be regiospecifically controlled. It was thus natural to expect that lignin macromolecules should have random primary structures. This has now been the prevailing assumption for almost fifty years, but of its correctness there has been no clear proof. Rather there have been occasional but insistent indications that lignins cannot just be products of random monolignol dehydropolymerization. Thus the present article seeks to apprehend the mechanistic implications of a situation where lignin primary structure would be determined by the sequence of interunit linkages along each biopolymer chain. The ramifications of a simple working hypothesis, that macromolecular lignin replication might occur directly through a template polymerization mechanism, are explored in detail. The manner in which the fidelity of the process could be maintained, through specific π-orbital interactions between the lignol radical precursors and characteristic substructures in the pre-existing lignin macromolecules, is explicitly described. The consequences of template polymerization are shown to be consistent with the absence of both optical activity and crystallinity in macromolecular lignin domains. It is proposed that the inherent primary structures of lignins are encoded in contiguous ‘dirigent’ arrays of lignol radical coupling sites distributed along individual polypeptide chains within lignifying plant cell walls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adler E (1957) Structural elements of lignin. Ind. Eng. Chem. 49: 1377–1383.

    Article  CAS  Google Scholar 

  • Adler E (1977) Lignin chemistry-past, present and future. Wood Sci. Technol. 11: 169–218.

    Article  CAS  Google Scholar 

  • Akiyama T, Nawawi DS, Matsumoto Y & Meshitsuka G (2003) Ratio of erythro and threo forms of β-O-4 structures in different wood species. Proc. 12th Internat. Symp. Wood Pulp. Chem. Vol I (pp. 285–288). University of Wisconsin, Madison, USA.

    Google Scholar 

  • Anterola AM & Lewis NG (2002) Trends in lignin modification: a comprehensive analysis of the effects of genetic manipulations mutations on lignification and vascular integrity. Phytochemistry 61: 221–294.

    Article  PubMed  CAS  Google Scholar 

  • Argyropoulos DS, Jurasek L, Krištofová L, Xia Z, Sun Y & Paluš E (2002) Abundance and reactivity of dibenzodioxocins in softwood lignin. J. Agric. Food Chem. 50: 658–666.

    Article  PubMed  CAS  Google Scholar 

  • Atalla RH & Agarwal UP (1985) Raman microprobe evidence for lignin orientation in the cell walls of native woody tissue. Science 227: 636–638.

    CAS  PubMed  Google Scholar 

  • Baxter NJ, Lilley TH, Haslam E & Williamson MP (1997) Multiple interactions between polyphenols and a salivary proline-rich protein repeat result in complexation and precipitation. Biochemistry 36: 5566–dy5577.

    Article  PubMed  CAS  Google Scholar 

  • Boerjan W, Ralph J & Baucher M(2003) Lignin biosynthesis. Annu. Rev. Plant Biol. 54: 519–546.

    Article  PubMed  CAS  Google Scholar 

  • Bolwell GP, Trethowan JB & Wojtaszek P (2000) A major antimicrobial hybrid chitin-binding protein from French bean with features common to arabinogalactan-proteins and hydroxyproline-rich glycoproteins. In: Nothnagel EA, Bacic A & Clarke AE (eds) Cell and Developmental Biology of Arabinogalactan-Proteins (pp. 83–93). Kluwer Academic/Plenum Publishers, New York, USA.

    Google Scholar 

  • Boudet A-M (1998) A new view of lignification. Trends Plant Sci. 3: 67–71.

    Article  Google Scholar 

  • Bradley DJ, Kjellbom P & Lamb CJ (1992) Elicitor- and wound-induced oxidative cross-linking of a proline-rich plant cell wall protein: a novel, rapid defense response. Cell 70: 21–30.

    Article  PubMed  CAS  Google Scholar 

  • Brown I, Trethowan J, Kerry M, Mansfield J & Bolwell GP (1998) Localization of components of the oxidative cross-linking of glycoproteins and of callose synthesis in papillae formed during the interaction between non-pathogenic strains of Xanthomonas campestris and French bean mesophyll cells. Plant J. 15: 333–343.

    Article  CAS  Google Scholar 

  • Brunow G, Karlsson O, Lundquist K & Sipilä J (1993) On the distribution of the diastereomers of the structural elements in lignins: the steric course of reactions mimicking lignin biosynthesis. Wood Sci. Technol. 27: 281–286.

    Article  CAS  Google Scholar 

  • Brunow G, Kilpeläinen I, Sipilä J, Syrjänen K, Karhunen P, Setälä H & Rummakko P (1998) Oxidative coupling of phenols and the biosynthesis of lignin. In: Lewis NG & Sarkanen S (eds) Lignin and Lignan Biosynthesis, ACS Symp. Ser. 697 (pp. 131–147). American Chemical Society, Washington DC, USA.

    Google Scholar 

  • Burlat V, Kwon M, Davin LB & Lewis NG (2001) Dirigent proteins and dirigent sites in lignifying tissues. Phytochemistry 57: 883–897.

    Article  PubMed  CAS  Google Scholar 

  • Chen C-L (1998) Characterization of milled wood lignins and dehydrogenative polymerisates from monolignols by carbon-13 NMR spectroscopy. In: Lewis NG & Sarkanen S (eds) Lignin and Lignan Biosynthesis, ACS Symp. Ser. 697 (pp. 255–275). American Chemical Society, Washington DC, USA.

    Google Scholar 

  • Claverie P (1978) Elaboration of approximate formulas for the interactions between large molecules-applications in organic chemistry. In: Pullman B (ed) Intermolecular Interactions-From Diatomics to Biopolymers (pp. 69–305). Wiley, New York, USA.

    Google Scholar 

  • Datta K, Schmidt A & Marcus A (1989) Characterization of two soybean repetitive proline-rich proteins and a cognate cDNA from germinated axes. Plant Cell 1: 945–952.

    Article  PubMed  CAS  Google Scholar 

  • Davin LB, Wang H-B, Crowell AL, Bedgar DL, Martin DM, Sarkanen S & Lewis NG (1997) Stereoselective bimolecular phenoxy radical coupling by an auxiliary (dirigent) protein without an active center. Science 275: 362–366.

    Article  PubMed  CAS  Google Scholar 

  • Donaldson LA (1994) Mechanical constraints on lignin deposition during lignification. Wood Sci. Technol. 28: 111–118.

    Article  CAS  Google Scholar 

  • Dushnicky LG, Ballance GM, Sumner MJ & MacGregor AW(1998) The role of lignification as a resistance mechanism in wheat to a toxin-producing isolate of Pyrenophora tritici,-repentis. Can.J. Plant Pathol. 20: 35–47.

    Article  Google Scholar 

  • Dutta S, Garver TM Jr & Sarkanen S (1989) Modes of association between kraft lignin components. In: Glasser WG & Sarkanen S (eds) Lignin-Properties and Materials, ACS Symp. Ser. 397 (pp. 155–176). American Chemical Society, Washington DC, USA.

    Google Scholar 

  • Ede RM & Kilpeläinen I (1995) Homo- and hetero-nuclear 2D NMR techniques-unambiguous structural probes for non-cyclic benzyl aryl ethers in soluble lignin samples. Res. Chem. Intermediates 21: 313–328.

    Article  CAS  Google Scholar 

  • Epiotis ND, Cherry WR, Shaik S, Yates R & Bernardi F (1977) Structural Theory of Organic Chemistry. Springer-Verlag, New York, USA.

    Google Scholar 

  • Evtuguin DV & Amado FML (2003) Application of electrospray ionization mass spectrometry to the elucidation of the primary structure of lignin. Macromol. Biosci. 3: 339–343.

    Article  CAS  Google Scholar 

  • Foster R (1969) Organic Charge-Transfer Complexes. Academic Press, New York, USA.

    Google Scholar 

  • Freudenberg K (1956) Beiträge zur Erforschung des Lignins. Angew. Chem. 68: 508–512.

    CAS  Google Scholar 

  • Freudenberg K & Nimz H (1962) Guajacylglycerin-β-pinoresinoläther, ein Dehydrierungsprodukt des Coniferylalkohols. Chem. Ber. 95: 2057–dy2062.

    CAS  Google Scholar 

  • Freudenberg K & Schlüter H (1955) Weitere Zwischenprodukte der Ligninbildung. Chem. Ber. 88: 617–625.

    CAS  Google Scholar 

  • Freudenberg K & Tausend H (1963) Weitere trimere Zwischen-produkte der Ligninbildung. Chem. Ber. 96: 2081–2085.

    CAS  Google Scholar 

  • Gang DR, Costa MA, Fujita M, Dinkova-Kostova AT, Wang H-B, Burlat V, Martin W, Sarkanen S, Davin LB & Lewis NG (1999) Regiochemical control of monolignol radical coupling: a new paradigm for lignin and lignan biosynthesis. Chemistry & Biology 6: 143–151.

    Article  CAS  Google Scholar 

  • Garver TM Jr & Sarkanen S (1986) Kraft lignins–the legacy of native structural characteristics, I: The verdict from 1 H NMR spectra of highly purified paucidisperse fractions of discrete kraft lignin components. Holzforschung 40 Suppl.: 93–100.

    Article  CAS  Google Scholar 

  • Garver TM Jr, Iwen ML & Sarkanen S (1989) The kinetics of macromolecular kraft lignin complex dissociation. Proc. 5 th Internat. Symp. Wood Pulp. Chem. Vol I (pp. 113–119). Tappi, Atlanta, USA.

    Google Scholar 

  • Gierer J (1982) The chemistry of delignification-a general concept, part I. Holzforschung 36: 43–51.

    CAS  Google Scholar 

  • Goodman JM (1998) Chemical Applications of Molecular Modelling. Royal Society of Chemistry, Cambridge, UK.

  • Guan S-Y, Mlynár J & Sarkanen S (1997) Dehydrogenative polymerization of coniferyl alcohol on macromolecular lignin templates. Phytochemistry 45: 911–918.

    Article  CAS  Google Scholar 

  • Hunter CA & Sanders JKM (1990) The nature of π–π interactions. J. Am. Chem. Soc. 112: 5525–5534.

    Article  CAS  Google Scholar 

  • Kang Z & Buchenauer H (2000) Ultrastructural and immuno-cytochemical investigation of pathogen development and host responses in resistant and susceptible wheat spikes infected by Fusarium culmorum. Physiol. Mol. Plant Pathol. 57: 255–268.

    Article  CAS  Google Scholar 

  • Karhunen P, Rummakko P, Sipilä J, Brunow G & Kilpeläinen I (1995) Dibenzodioxocins; a novel type of linkage in softwood lignins. Tetrahedron Lett. 36: 169–170.

    Article  CAS  Google Scholar 

  • Kilpeläinen I, Sipilä J, Brunow G, Lundquist K & Ede RM (1994) Application of two-dimensional NMR spectroscopy to wood lignin structure determination and identification of some minor structural units of hard- and softwood lignins. J. Agric. Food Chem. 42: 2790–2794.

    Article  Google Scholar 

  • Lathan WA, Pack GR & Morokuma K (1975) Molecular orbital studies of electron donor-acceptor complexes, II: Carbonyl cyanide-benzene complex and dispersion energy contribution. J. Am. Chem. Soc. 97: 6624–6628.

    Article  CAS  Google Scholar 

  • Lewis NG, Davin LB & Sarkanen S (1998) Lignin and lignan biosynthesis-distinctions and reconciliations. In: Lewis NG and Sarkanen S (eds) Lignin and Lignan Biosynthesis, ACS Symp. Ser. 697 (pp. 1–27). American Chemical Society, Washington DC, USA.

    Google Scholar 

  • Lewis NG, Davin LB & Sarkanen S (1999) The nature and function of lignins. In: Barton DHR, Nakanishi K & Meth-Cohn O (eds) Comprehensive Natural Products Chemistry; Vol. 3, Pinto BM (vol ed) Carbohydrates and Their Derivatives Including Tannins, Cellulose and Related Lignins (pp. 617–745). Elsevier Science, Oxford, UK.

    Google Scholar 

  • Lundquist K (1970) Acid degradation of lignin, part II: Separation and identification of low molecular weight phenols. Acta Chem. Scand. 24: 889–907.

    Article  CAS  Google Scholar 

  • Lundquist K (1973) Acid degradation of lignin, part VIII: Low molecular weight phenols from acidolysis of birch lignin. Acta Chem. Scand. 27: 2597–2606.

    CAS  Google Scholar 

  • Lundquist K & Stomberg R (1988) On the occurrence of structural elements of the lignan type (β–β structures) in lignins: The crystal structures of (+)-pinoresinol and (±)-trans,-3,4-divanillyltetrahydrofuran. Holzforschung 42: 375–384.

    CAS  Google Scholar 

  • Marcus A, Greenberg J & Averyhart-Fullard V (1991) Repetitive proline-rich proteins in the extracellular matrix of the plant cell. Physiol. Plant. 81: 273–279.

    Article  CAS  Google Scholar 

  • Millar DJ, Slabas AR, Sidebottom C, Smith CG, Allen AK & Bolwell GP (1992) A major stress-inducible Mr-42000 wall glycoprotein of French bean (Phaseolus vulgaris L.). Planta 187: 176–184.

    Article  CAS  Google Scholar 

  • Mlynár J & Sarkanen S (1996) Renaissance in ultracentrifugal sedimentation equilibrium calibrations of size exclusion chromatographic elution profiles. In: Potschka M & Dubin PL (eds) Strategies in Size Exclusion Chromatography, ACS Symp. Ser. 635 (pp. 379–400). American Chemical Society, Washington DC, USA.

    Google Scholar 

  • Morokuma K (1977) Why do molecules interact? The origin of electron donor-acceptor complexes, hydrogen bonding and proton affinity. Acc. Chem. Res. 10: 294–300.

    Article  CAS  Google Scholar 

  • Müsel G, Schindler T, Bergfeld R, Ruel K, Jacquet G, Lapierre C, Speth V & Schopfer P (1997) Structure and distribution of lignin in primary and secondary cell walls of maize coleoptiles analyzed by chemical and immunological probes. Planta 201: 146–159.

    Article  Google Scholar 

  • Nimz H (1974) Beech lignin-proposal of a constitutional scheme. Angew. Chem. Internat. Ed. Engl. 13: 313–321.

    Article  Google Scholar 

  • Okusa K, Miyakoshi T & Chen C-L (1996) Comparative studies on dehydrogenative polymerization of coniferyl alcohol by laccases and peroxidases, part 1: preliminary results. Holzforschung 50: 15–23.

    CAS  Google Scholar 

  • Ralph J, Hatfield RD, Piquemal J, Yahiaoui N, Pean M, Lapierre C & Boudet AM (1998) NMR characterization of altered lignins extracted from tobacco plants down-regulated for lignification enzymes cinnamyl-alcohol dehydrogenase and cinnamoyl-CoA reductase. Proc. Natl. Acad. Sci. USA 95: 12803–12808.

    Article  PubMed  CAS  Google Scholar 

  • Roblin J-P, Duran H, Duran E, Gorrichon L & Donnadieu B (2000) X-ray structure of a trimeric 5,5′-biaryl/erythro-O-4-ether lignin model: evidence for through-space weak interactions. Chem. Eur. J. 6: 1229–1235.

    Article  CAS  Google Scholar 

  • Russell WR, Forrester AR, Chesson A & Burkitt MJ (1996) Oxidative coupling during lignin polymerization is determined by unpaired electron delocalization within parent phenylpropanoid radicals. Arch. Biochem. Biophys. 332: 357–366.

    Article  PubMed  CAS  Google Scholar 

  • Ryser U, Schorderet M, Zhao G-F, Studer D, Ruel K, Hauf G & Keller B (1997) Structural cell-wall proteins in protoxylem development: evidence for a repair process mediated by a glycine-rich protein. Plant J. 12: 97–111.

    Article  PubMed  CAS  Google Scholar 

  • Sakakibara A (1980) A structural model of softwood lignin. Wood Sci. Technol. 14: 89–100.

    Article  CAS  Google Scholar 

  • Sarkanen KV (1971) Precursors and their polymerization. In: Sarkanen KV and Ludwig CH (eds) Lignins-Occurrence, Formation, Structure and Reactions (pp. 95–163). Wiley-Interscience, New York, USA.

    Google Scholar 

  • Sarkanen S (1998) Template polymerization in lignin biosynthesis. In: Lewis NG & Sarkanen S (eds) Lignin and Lignan Biosynthesis, ACS Symp. Ser. 697 (pp. 194–208). American Chemical Society, Washington DC, USA.

    Google Scholar 

  • Sarkanen S, Teller DC, Hall J & McCarthy JL (1981) Associative effects among organosolv lignin components. Macromolecules 14: 426–434.

    CAS  Google Scholar 

  • Sarkanen S, Teller DC, Stevens CR & McCarthy JL (1984) Associative interactions between kraft lignin components. Macromolecules 17: 2588–2597.

    Article  CAS  Google Scholar 

  • Sipilä J, Brunow G, Tunninen P, Niemi T & Åhlgren A (1997) Degradation of quinone methides via β-ether homolysis-an important reaction in the chemistry of hardwood lignins? Proc. 9 th Internat. Symp. Wood Pulp. Chem. oral presentation B2 (pp. 1–4). CPPA, Montreal, Canada.

    Google Scholar 

  • Stein BD, Klomparens KL & Hammerschmidt R (1993) Histochemistry and ultrastructure of the induced resistance response of cucumber plants to Colletotrichum lagenarium. J. Phytopathol. 137: 177–188.

    CAS  Google Scholar 

  • Stomberg R & Lundquist K (1986) Stereochemical assignment of the diastereomers of 1-(3,4-dimethoxyphenyl)-2-(2-methoxyphenoxy)-1,3-propanediol from x-ray analysis. Acta Chem. Scand. A 40: 705–710.

    Google Scholar 

  • Stomberg R & Lundquist K (1987) The crystal structure of trans,-2,3-dihydro-2-(4-hydroxy-3-methoxyphenyl)-3-hydroxymethyl-7-methoxybenzofuran. Acta Chem. Scand. B 41: 304–309.

    Google Scholar 

  • Strong RL (1981) Intermolecular forces and spectra in weak charge transfer interactions. In: Pullman B (ed) Intermolecular Forces (pp. 217–231). D. Reidel, Dordrecht, Holland.

    Google Scholar 

  • Terashima N, Fukushima K, He L-F & Takabe K (1993) Comprehensive model of the lignified plant cell wall. In: Jung HG, Buxton DR, Hatfield RD & Ralph J (eds) Forage Cell Wall Structure and Digestibility (pp. 247–270). American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, Madison, USA.

  • Terashima N, Atalla RH, Ralph SA, Landucci LL, Lapierre C & Monties B (1995) New preparations of lignin polymer models under conditions that approximate cell wall lignification, I: Synthesis of novel lignin polymer models and their structural characterization by 13 C NMR. Holzforschung 49: 521–527.

    Article  CAS  Google Scholar 

  • Yan JF, Pla F, Kondo R, Dolk M & McCarthy JL (1984) Lignin 21: Depolymerization by bond cleavage reactions and degelation. Macromolecules 17: 2137–2142.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Yr., Sarkanen, S. Macromolecular lignin replication: A mechanistic working hypothesis. Phytochemistry Reviews 2, 235–255 (2003). https://doi.org/10.1023/B:PHYT.0000046173.38194.ba

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:PHYT.0000046173.38194.ba

Navigation