Skip to main content
Log in

On the influence of alloying elements on the bainite reaction in low alloy steels during continuous cooling

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The CCT diagrams of a class of Fe-(0.1–0.6)C-(0.4–2.0)Si-(0.4–2.0)Mn-(0.5–2.0)Cr-(0.0–0.8)Mo steels are predicted by an artificial neural network (ANN) model. The model indicates that an increase in carbon concentration (C wt%) gives rise to a decrease in bainite start (BS) temperatures. The rate of decrease depends also on cooling rate. Additions of Si, Mn, Cr and Mo all decrease the bainite start temperature. The dependencies for different alloying elements vary: 32, 100–120, 100–130, and 70–150°C per wt% of Si, Mn, Cr, and Mo, respectively. Mn shifts the whole bainite transformation region to the far right-hand side of the CCT diagram, while C, Cr, and Mo have considerable, and Si has minor effects on the incubation period of bainite. Mn and Cr significantly decrease the MS temperature, while Si only has a minor influence. When Mo < 0.5 wt% it has a minor influence, whilst when Mo > 0.5 wt%, it increases MS temperature. Quasi-isochronal and quasi-isothermal methods have been used to analyze the influence of the proportion of Mo and C upon the BS and incubation period. Attempts, for qualitative explanations using the shear and diffusion mechanism, as well as a certain amount of thermodynamic analysis, have been made to interpret the influence of alloying elements on the nucleation of the bainite reaction. The results support that bainite reaction takes place utilizing a diffusion-controlled mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. K. D. H. Bhadeshia, Metal Science 16 (1982) 159.

    Google Scholar 

  2. K. R. Kinsman, E. Eichen and H. I. Aaronson, Metallurgical Transactions A 6A (1975) 303.

    Google Scholar 

  3. J. S. Kirkaldy, B. A. Thomson and E. A. Baganis, in “Hardenability Concepts with Applications to Steels,” edited by D. V. Doane and J. S. Kirkaldy (AIME: Warrendale PA, 1978) p. 82.

    Google Scholar 

  4. J. S. Kirkaldy and D. Venugopalan, in “Phase Trans-formations in Ferrous Alloys,” edited by A. R. Marder and J. I. Goldstein (AIME: Warrendale, Pennsylvania, 1984) p. 125.

    Google Scholar 

  5. M. Enomoto, ISIJ International 32 (1992) 297.

    Google Scholar 

  6. N. Saunders, A. P. Miodownik and R. W. Cahn, (eds.), CALPHAD Calculation of Phase Diagrams: A Comprehen-sive Guide. 1998, 1.

  7. J. S. Kirkaldy and R. C. Sharma, Scripta Metallurgica 16 (1982) 1193.

    Google Scholar 

  8. I. Alexander and H. Morton, “An Introduction to Neural Computing” (Chapmann & Hall, London, 1993).

    Google Scholar 

  9. W. Steven and A. G. Haynes, JISI 183 (1956) 349.

    Google Scholar 

  10. C. Y. Kung and J. J. Rayment, “Hardenability concepts with applications to steel,” Anonymous TMS-AIME, Warrendale, PA, 1978; p. 229.

    Google Scholar 

  11. K. W. Andrews, JISI 203 (1965) 721.

    Google Scholar 

  12. R. Hecht-nielsen, “Neurocomputing” (Addison-Wesley Publishing Company, Inc. Reading, Massachusetts, 1991).

    Google Scholar 

  13. W. G. Vermeulen, Application of Artificial Neural Networks in Metal Production Processes, 1995.

  14. H. K. D. H. Bhadeshia and J. W. Christian, Metall. Trans. A 21A(4) (1990) 767.

    Google Scholar 

  15. T. Ko and A. M. Cottrell, JISI 172 (1952) 307.

    Google Scholar 

  16. F. R. Hehemann, K. R. Kinsman and H. I. Aaronson, Metall. Trans. 3 (1972) 1077.

    Google Scholar 

  17. D. E. Coates, ibid. 4 (1973) 2313.

    Google Scholar 

  18. R. W. Kennard and L. A. Stone, Technometrics 11 (1969) 137.

    Google Scholar 

  19. W. W. Cias, Climax Molybdenum Company, Greenwich, 1973.

  20. G. F. Van Der Voort, ASM International, Reading PA, 1991.

  21. C. Dorrepaal, Modelling of CCT Diagrams Using Artificial Neural Networks. 1997, Delft University of Technology. Master.

  22. J. Wang, P. Van Der Wolk and S. Van Der Zwaag, ISIJ International 39(10) (1999) 1038.

    Google Scholar 

  23. Y. Ohmori and T. Maki, Mat. Trans. JIM 32 (1991) 631.

    Google Scholar 

  24. J. W. Christian, Proc. ICOMAT-79, Anonymous MIT Press, Cambridge, MA, 1979, p. 220.

    Google Scholar 

  25. L. Kaufman, S. V. Radcliffe and M. Cohen, in “De-composition of Austenite by Diffusional Processes,” edited by V. F. Zackay and H. I. Aaronson (Interscience, 1962) p. 313.

  26. L. Kaufman and M. Cohen, Prog. Metal Physics 1 (1958) 165.

    Google Scholar 

  27. C. L. Magee, “Phase Transformations” (ASM, 1970) p. 115.

  28. M. Hillert, Acta Metallurgica 1 (1953) 764.

    Google Scholar 

  29. H. I. Aaronson, W. T. J. Reynolds, G. J. Shiflet and G. Spanos, Metall. Trans. A 21A(6) (1990) 1343.

    Google Scholar 

  30. S. K. Liu, L. Yang, D. G. Zhu and J. Zhang, Metall. Mat. Trans. A 25A (1994) 1991.

    Google Scholar 

  31. G. B. Olson and M. Cohen, Metallurgical Transactions A 7A (1976) 1905.

    Google Scholar 

  32. M. Cohen Idem., ibid. 7A (1976) 1897.

    Google Scholar 

  33. J. Wang, P. Van Der Wolk and S. Van Der Zwaag, EuroMat'99, Sep. 27-30, 1999, Munich, Germany.

  34. H. Fang, J. Wang and Y. Zheng, Metall. Mat. Trans. A 25A(9) (1994) 2001.

    Google Scholar 

  35. M. Hillert, ibid. 25A(9) (1994) 1957.

    Google Scholar 

  36. S. J. Barnard, G. D. W. Smith, A. J. Garratt-reed and J. Vander Sande, in “Solid-Solid Phase Trans-formations,” edited by H. I. Aaronson, D. E. Laughlin, R. F. Sekerka and C. M. Wayman (Metallurgical Society of AIME, 345 Est 47th Street, New York, NY 10017, USA, 1982) p. 881.

    Google Scholar 

  37. S. K. Liu and J. Zhang, Metall. Trans. A 21A (1990) 1517.

    Google Scholar 

  38. S. A. Hackney and G. J. Shiflet, in “Phase Transforma-tions in Ferrous Alloys,” edited by A. R. Marder and J. I. Goldstein (AIME, Warrendale, Pennsylvania, 1984) p. 237.

    Google Scholar 

  39. G. J. Shiflet Idem., Acta Metallurgica 35 (1987) 1007.

    Google Scholar 

  40. B. P. J. Sandvik, Metallurgical Transactions A 13A (1982) 777.

    Google Scholar 

  41. J. Wang, H. Fang, Z. Yang and Y. Zheng, ISIJ Inter-national 35(8) (1995) 992.

    Google Scholar 

  42. K. R. Kinsman and H. I. Aaronson, “Transformation and Hardenability in Steels” (Climax Molybdenum Co., Ann Arbor, Michigan, 1967) p. 39.

    Google Scholar 

  43. E. S. Davenport and E. C. Bain,Trans. AIME 90 (1930) 117.

    Google Scholar 

  44. H. Goldenstein and H. I. Aaronson, Metall. Trans. A 21A (1990) 1465.

    Google Scholar 

  45. W. T. Reynolds, JR., F. Z. Li, C. K. Shui and H. I. Ronson, ibid. 21A (1990) 1433.

    Google Scholar 

  46. P. J. Van Der Wolk, W. G. Vermeulen and S. Van Der Zwaag, 2nd International Conference on Modelling of Metal Rolling Processes, edited by J. H. Beynon (The Institute of Materials, London, 1996) p. 378.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., Van Der Wolk, P.J. & Van Der Zwaag, S. On the influence of alloying elements on the bainite reaction in low alloy steels during continuous cooling. Journal of Materials Science 35, 4393–4404 (2000). https://doi.org/10.1023/A:1004865209116

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004865209116

Keywords

Navigation