We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Skip to main content
Log in

The Surface Chemistry of Acetic Acid on Pd{111}

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

XPS, temperature-programmed reaction and HREELS have been used to study the adsorption and reactions of acetic acid on Pd{111}. At 170 K the adsorbed monolayer contains intact and dissociated acetic acid molecules, the latter consisting of a mixture of bidentate acetate and another species tentatively identified as monodentate acetate. The monodentate acetate appears to resemble closely the acetate species observed under reaction conditions at the surface of a pure palladium vinyl acetate synthesis catalyst. Thermal decomposition of the adsorbate yields CO2, H2O, CO, H2 and carbon. The associated processes may be rationalised in terms of two reaction channels, one due to the monodentate and the other due to the bidentate acetate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.J. Vajo, Y.K. Sun and W.H. Weinberg, Appl. Surf. Sci. 29 (1987) 165.

    Google Scholar 

  2. C.M. Friend and X. Xu, Ann. Rev. Phys. Chem. 42 (1991) 251.

    Google Scholar 

  3. J. Ushio, I. Papai, A. St-Amant and D.R. Salahub, Surf. Sci. 262 (1992) L134.

    Google Scholar 

  4. M.A. Szymanski and M.J. Gillan, Surf. Sci. 367 (1996) 135.

    Google Scholar 

  5. N. Aas and M. Bowker, J. Chem. Soc. Faraday Trans. 89 (1993) 1249.

    Google Scholar 

  6. J.L. Davis and M.A. Barteau, Langmuir 5 (1989) 1299.

    Google Scholar 

  7. J.L. Davis and M.A. Barteau, Surf. Sci. 256 (1991) 50; 260 (1996) 215.

    Google Scholar 

  8. C.J. Baddeley, M. Tikhov, C. Hardacre, J.R. Lomas and R.M. Lambert, J. Phys. Chem. 100 (1996) 2189.

    Google Scholar 

  9. S.R. Smith and T.D. Thomas, J. Am. Chem. Soc. 100 (1978) 5459.

    Google Scholar 

  10. H.J. Freund and M.W. Roberts, Surf. Sci. Rep. 25 (1996) 225.

    Google Scholar 

  11. A.R. Garcia, J.L. da Silva and L.M. Ilharco, Surf. Sci. 415 (1998) 183.

    Google Scholar 

  12. K. Ito and H.J. Bernstein, Canad. J. Chem. 34 (1956) 170.

    Google Scholar 

  13. D.H. Williams and I. Fleming, Spectroscopic Methods in Organic Chemistry, 2nd Ed. ( McGraw-Hill, London, 1973).

    Google Scholar 

  14. P.F. Krause, J.E. Katon, J.M. Rodgers and D.B. Phillips, Appl. Spectrosc. 31 (1997) 110.

    Google Scholar 

  15. W. Weltner Jr., J. Am. Chem. Soc. 77 (1955) 3941.

    Google Scholar 

  16. S. Kishida and K.J. Nakamoto, J. Chem. Phys. 41 (1964) 1558.

    Google Scholar 

  17. S.M. Augustine and J.P. Blitz, J. Catal. 142 (1993) 312.

    Google Scholar 

  18. G. Socrates, ed., Infrared Characteristic Group Frequencies ( Wiley, Chichester, 1994) ch. 10.

    Google Scholar 

  19. A.M. Bradshaw and F.M. Hoffman, Surf. Sci. 72 (1978) 513.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haley, R.D., Tikhov, M.S. & Lambert, R.M. The Surface Chemistry of Acetic Acid on Pd{111}. Catalysis Letters 76, 125–130 (2001). https://doi.org/10.1023/A:1012330230543

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012330230543

Navigation