Skip to main content
Log in

Enzymology of the oxidation of ammonia to nitrite by bacteria

  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

The enzymes which catalyze the oxidation of ammonia to nitrite by autotrophic bacteria are reviewed. A comparison is made with enzymes which catalyze the same reactions in methylotrophs and organotrophic heterotrophic bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abeliovich A & Vonshak A (1992) Anaerobic metabolism of Nitrosomonas europaea. Arch. Microbiol. 158: 267–270

    Google Scholar 

  • Aleem MIH (1966) Generation of reducing power in chemosynthesis. II. Energy linked reduction of pyridine nucleotides in the chemoautotroph, Nitrosomonas europaea. Biochim. Biophys. Acta 113: 216–224

    Google Scholar 

  • Anderson IC & Levine JS (1986) Relative rates of nitric oxide and nitrous oxide production by nitrifiers, denitrifiers, and nitrate respirers. Appl. Environ. Microbiol. 51: 938–945

    Google Scholar 

  • Andersson KK, Kent TA, Lipscomb JD, Hooper AB & Munck E (1984) Mossbauer EPR and optical studies of the P-460 center of hydroxylamine oxidoreductase from Nitrosomonas. A ferrous heme with an unusually large quadrupole splitting. J. Biol. Chem. 259: 6833–6840

    Google Scholar 

  • Andersson KK & Hooper AB (1983) O2 and H2O are each the source of one O of HNO2 produced from NH3 by Nitrosomonas; 15N-NMR evidence. FEBS Lett. 164:236–240

    Google Scholar 

  • Arciero D, Balny C & Hooper AB (1991) Spectroscopic and rapid kinetic studies of reduction of cytochrome c554 by hydroxylamine oxidoreductase from Nitrosomonas europaea. Biochem. 30: 11466–11472

    Google Scholar 

  • Arciero DM & Hooper AB (1994) A di-heme cytochrome c peroxidase from Nitrosomonas europaea catalytically active in both the oxidized and half-reduced states. J. Biol. Chem. 269: 11878–11886

    Google Scholar 

  • Arciero DM, Collins M, Haladjian J, Bianco P & Hooper AB (1991) Resolution of the four hemes of cytochrome c554 from Nitrosomonas europaea by redox potentiometry and optical spectroscopy. Biochem. 30: 11459–11465

    Google Scholar 

  • Arciero DM, Hooper AB, Cai M & Timkovich R (1993) Evidence for the structure of the active site heme P460 in hydroxylamine oxidoreductase of Nitrosomonas. Biochem. 32: 9370–9378

    Google Scholar 

  • Bedard C & Knowles R (1989) Physiology, biochemistry, and specific inhibitors of CH4, NH4 + and CO oxidation by methanotrophs and nitrifiers. Microbiol. Rev. 53: 68–84

    Google Scholar 

  • Bergmann D & Hooper AB (1994a) Primary structure of cytochrome P-460 of Nitrosomonas. FEBS Lett. 353: 324–326

    Google Scholar 

  • — (1994b) Sequence of the gene amoB which encodes the 46 kDa polypeptide of ammonia monooxygenase of Nitrosomonas europaea. Biochem. Biophys. Res. Commun. 204: 759–762

    Google Scholar 

  • Bergmann D, Arciero D & Hooper AB (1994) Organization of the HAO gene cluster of Nitrosomonas europaea: genes for two tetraheme cytochromes. J. Bacteriol. 176: 3148–3153

    Google Scholar 

  • Bock E, Schmidt I, Stüven R & Zart D (1995) Nitrogen loss caused by denitrifying Nitrosomonas cells using ammonium or hydrogen as electron donors and nitrite as electron acceptor. Arch. Microbiol. 163: 16–20

    Google Scholar 

  • Bremner, JM and Blackmer AM (1978) Nitrous oxide: emission from soils during nitrification of fertilizer nitrogen. Science 199: 295–296

    Google Scholar 

  • Burrows KJ, Cornish A, Scott D & Higgins IJ (1984) Substrate specificities of the soluble and particulate methane mono-oxygenases of Methylosinus trichosporium OB3b. J. Gen. Microbiol. 130: 3327–3333

    Google Scholar 

  • Chistosterdov AY, Chistosterdova LV, McIntire WS & Lidstrom ME (1994) Genetic organization of the mau gene cluster in Methylobacterium extorquens AM1: complete nucleotide sequence and generation and characteristics of mau mutants. J. Bacteriol. 176: 4052–4065

    Google Scholar 

  • Collins M, Arciero DM & Hooper AB (1993) Optical spectrophotometric resolution of the hemes of hydroxylamine oxidoreductase heme quantitation and pH dependence of Em. J. Biol. Chem. 268: 14655–14662

    Google Scholar 

  • DiSpirito AA, Lipscomb JD & Hooper AB (1986) Cytochrome aa 3 from Nitrosomonas europaea. J. Biol. Chem. 261: 17048–17056

    Google Scholar 

  • DiSpirito AA, Taaffe LR, Lipscomb JD & Hooper AB (1985) A ‘blue’ copper oxidase from Nitrosomonas europaea. Biochim. Biophys. Acta 827: 320–326

    Google Scholar 

  • Drozd JS (1980) Respiration in the ammonia oxidizing chemoautotrophic bacteria. In: Knowles CJ (Ed) Diversity of Bacterial Respiratory Systems. Vol. 2. (pp 81–111) CRC Press, Boca Raton. Fla.

    Google Scholar 

  • Ensign SA, Hyman MR & Arp DJ (1993) In vitro activation of ammonia monooxygenase from Nitrosomonas by copper. J. Bacteriol. 175: 1971–1998

    Google Scholar 

  • Erickson RH & Hooper AB (1972) Preliminary characterization of a variant CO-binding heme protein from Nitrosomonas. Biochim. Biophys. Acta 275: 231–244

    Google Scholar 

  • Fox BG, Borneman JG, Wackett LP & Lipscomb JD (1990) Haloalkane oxidation by the soluble methane monooxygenase from Methylosinus trichosporium OB3b: mechanistic and environmental implications. Biochem. 29: 6419–6427

    Google Scholar 

  • Goreau TJ, Kaplan WA, Wofsy SC, McElroy MB, Valois FW & Watson SW (1980) Production of NO2 and N2O by nitrifying bacteria at reduced concentrations of oxygen. Appl. Environ. Microbiol. 40: 526–532

    Google Scholar 

  • Green J & Dalton H (1989) Substrate specificity of soluble methane monooxygenase. Mechanistic implications. J. Biol. Chem. 264: 17698–17703

    Google Scholar 

  • Guengerich FP & MacDonald TL (1990) Mechanisms of cytochrome P-450 catalysis. FASEB J. 4: 2453–2459

    Google Scholar 

  • Head IM, Hiorns WD, Embley TM, McCarthy AJ & Saunders JR (1993) The phylogeny of autotrophic ammonia-oxidizing bacteria as determined by analysis of 16S ribosomal RNA gene sequences. J. Gen. Microbiol. 139: 1147–1153

    Google Scholar 

  • Hendrich M, Logan MSP, Andersson KK, Arciero DM, Lipscomb JD & Hooper AB (1994) The active site of hydroxylamine oxidoreductase: evidence from integer spin EPR. J. Am. Chem. Soc. 116: 11961–11968

    Google Scholar 

  • Hollocher TC, Tate ME & Nicholas DJD (1981) Oxidation of ammonia by Nitrosomonas europaea: definitive 18O-tracer evidence that hydroxylamine formation involves a monooxygenase. J. Biol. Chem. 256: 10834–10836

    Google Scholar 

  • Holmes AJ, Costello A, Lidstrom ME and Murrell JC (1995) Evidence that particulate methane monoxygenase and ammonia monoxygenase may be evolutionarily related. FEMS Microbiol. Lett. 132: 203–208

    Google Scholar 

  • Hooper AB (1968) A nitrite-reducing enzyme from Nitrosomonas europaea preliminary characterization with hydroxylamine as electron donor. Biochim. Biophys. Acta 162: 49–65

    Google Scholar 

  • Hooper AB & Nason A (1965) Characterization of hydroxylamine-cytochrome c reductase from the chemoautotrophs Nitrosomonas europaea and Nitrosocystis oceanus. J. Biol. Chem. 240: 4044–4057

    Google Scholar 

  • Hooper AB & Terry KR (1977) Hydroxylamine oxidoreductase of Nitrosomonas: inactivation by hydrogen peroxide. Biochem. 16: 455–459

    Google Scholar 

  • — (1979) Hydroxylamine oxidoreductase of Nitrosomonas: production of nitric oxide from hydroxylamine. Biochim. Biophys. Acta 571: 12–20

    Google Scholar 

  • Hooper AB, Arciero DM, DiSpirito AA, Fuchs J, Johnson M, LaQuier F, Mundfrom G & McTavish H. (1990) Production of Nitrite and N2O by the Ammonia-oxidizing nitrifiers. In: Nitrogen fixation: Achievements and Objectives. Gresshof PM, Newton WE, Roth WE and Stacey G (eds) Chapman-Hall, N.Y. pp. 387–391

    Google Scholar 

  • Hyman MR & Wood PM (1983) Methane oxidation by Nitrosomonas europaea. Biochem. J. 212: 31–37

    Google Scholar 

  • — (1985) Suicidal inactivation and labelling of ammonia moncoxygenase by acetylene. Biochem. J. 227: 779–725

    Google Scholar 

  • Hyman MR, Murton IB & Arp DJ (1988) Interaction of ammonia monooxygenase from Nitrosomonas europaea with alkanes, alkenes and alkynes. Appl. Environ. Microbiol. 54: 3187–3190

    Google Scholar 

  • Hyman MR, Page CL & Arp DJ (1994) Oxidation of methyl fluoride and dimethyl ether by ammonia monooxygenase in Nitrosomonas europaea. Appl. Environ. Microbiol. 60: 3033–3035

    Google Scholar 

  • Jahnke LS, Lyman C & Hooper AB (1984) Carbonic anhydrase carbon dioxide levels and growth of Nitrosomonas. Arch. Mikrobiol. 140: 565–571

    Google Scholar 

  • Jetten M, Logemann S, Muyzer G, Van Loosdrecht M, De Vries S, Robertson L & Kuenen JG (1996) Novel principles and processes in the removal of nitrogen from waste water. Antonie van Leeuwenhoek, this volume

  • Jones RD & Morita RY (1983a) Methane oxidation by Nitrosococcus oceanus and Nitrosomonas europaea. Appl. Environ. Microbiol. 45: 401–410

    Google Scholar 

  • — (1983b) Carbon monoxide oxidation by chemolithotrophic ammonium oxidizers. Can. J. Microbiol. 29: 1145–1551

    Google Scholar 

  • Juliette LY, Hyman MR & Arp DJ (1993) Inhibition of ammonia oxidation in Nitrosomonas europaea by sulfur compounds: thioethers are oxidized to sulfoxides by ammonia monooxygenase. Appl. Environ. Microbiol. 59: 3718–3727

    Google Scholar 

  • Keener WK & Arp DJ (1994) Transformations of aromatic compounds by Nitrosomonas europaea. Appl. Environ. Microbiol. 60: 1914–1920

    Google Scholar 

  • Kluyver AJ & Donker HJK (1926) Die Einheit in der Biochemie. Chem. Zelle u. Gewebe 13: 134–190

    Google Scholar 

  • Lees H (1952) The biochemistry of the nitrifying organisms: I. the ammonia-oxidizing systems of Nitrosomonas. Biochem. J. 52: 134–139

    Google Scholar 

  • Lipschultz F, Zafiriou OC, Wofsy SC, McElroy MB, Valois FW & Watson SW (1981) Production of NO and N2O by soil nitrifying bacteria. Nature 294: 641–643

    Google Scholar 

  • McTavish H, Fuchs J & Hooper AB (1993a) Sequence of the gene for ammonia monooxygenase of Nitrosomonas europaea. J. Bacteriol. 175: 2436–2444

    Google Scholar 

  • McTavish H, LaQuier F, Arciero D, Logan M, Mundfrom G, Fuchs J & Hooper AB (1993b) Multiple copies of genes for electron transport proteins in the bacterium Nitrosomonas europaea. J. Bacteriol. 175: 2445–2447

    Google Scholar 

  • Miller DJ & Wood PM (1983) The soluble cytochrome oxidase of Nitrosomonas europaea. J. Gen. Microbiol. 129: 1645–1650

    Google Scholar 

  • Mulder A, Van de Graaf AA, Robertson LA & Kuenen JG (1995) Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor. FEMS Microbiol. Ecol. 16: 177–184

    Google Scholar 

  • Murrell JC & Holmes AJ (1996) Molecular biology of particulate methane monooxygenase. In: Lidstrom ME & Tabita FR (Eds) Proceedings of the 8th International Symposium on Microbial Growth on C1 Compounds. Kluwer Academic Publishers, pp. 133–140

  • Numata M, Saito T, Yamazaki T, Fukumori Y & Yamanaka T (1990) Cytochrome P-460 of Nitrosomonas europaea: further purification and further characterization. J. Biochem. 108: 1016–1023

    Google Scholar 

  • Poth M (1986) Dinitrogen production from nitrite by a Nitrosomonas isolate. Appl. Environ. Microbiol. 52: 957–959

    Google Scholar 

  • Poth M & Focht DD (1985) 15N Kinetic analysis of N2O production by Nitrosomonas europaea: an examination of nitrifier denitrification. Appl. Environ. Microbiol. 4: 1134–1141

    Google Scholar 

  • Rasche ME, Hyman MR & Arp DJ (1990a) Biodegradation of halogenated hydrocarbon fumigants by nitrifying bacteria. Appl. Environ. Microbiol. 56: 2568–2571

    Google Scholar 

  • Rasche M, Hicks R, Harding R, Hyman M & Arp D (1990b) Oxidation of monohalogenated ethanes and n-chlorinated alkanes by whole cells of Nitrosomonas europaea. J. Bacteriol. 172: 5368–5373

    Google Scholar 

  • Rasche ME, Hyman MR & Arp DJ (1991) Factors limiting aliphatic chlorocarbon degradation by Nitrosomonas europaea: cometabolic inactivation of ammonia monooxygenase and substrate specificity. Appl. Environ. Microbiol. 57: 2986–2994

    Google Scholar 

  • Remde A & Conrad R (1990) Production of nitric oxide in Nitrosomonas europaea by reduction of nitrite. Arch. Microbiol. 154: 187–191

    Google Scholar 

  • Ritchie GAF & Nicholas DJD (1972) Identification of the sources of nitrous oxide produced by oxidative and reductive processes in Nitrosomonas europaea. Biochem. J. 126: 1181–1191

    Google Scholar 

  • Robertson LA & Kuenen JG (1990) Combined heterotrophic nitrification and aerobic denitrification in Thiosphaera pantotropha and other bacteria. Antonie van Leeuwenhoek 57: 139–152

    Google Scholar 

  • Ronen-Tarazi M, Bonfil DJ, Lieman-Hurwitz J & Kaplan A (1996) Cyanobacterial genes involved in inorganic carbon uptake. In: Lidstrom ME & Tabita FR (Eds) Proceedings of the 8th International Symposium on Microbial Growth on C1 Compounds. Kluwer Academic Publishers, pp. 49–55

  • Sayavedra-Sota LA, Hommes NG & Arp DJ (1994) Characterization of the gene encoding hydroxylamine oxidoreductase in Nitrosomonas europaea. J. Bacteriol. 176: 504–510

    Google Scholar 

  • Suzuki I, Kwok SC & Dular U (1976) Competitive inhibition of ammonia oxidation in Nitrosomonas europaea by methane, carbon monoxide or methanol. FEBS Lett. 72: 117–120

    Google Scholar 

  • Suzuki I, Dular U & Kwok SC (1974) Ammonia and ammonium ion as substrate for oxidation by Nitrosomonas cells and extracts. J. Bacteriol. 120: 556–558

    Google Scholar 

  • Teske A, Alm E, Regan JM, Toze S, Rittman BE & Stahl DA (1994) Evolutionary relationships among ammonia-and nitrite-oxidizing bacteria. J. Bacteriol. 176: 6623–6630

    Google Scholar 

  • Tsang DCY & Suzuki I (1982) Cytochrome c 554 as a possible electron donor in the hydroxylation of ammonia and carbon monoxide in Nitrosomonas europaea. Can. J. Biochem. 60: 1018–1024

    Google Scholar 

  • Van de Graaf AA, Mulder A, De Bruijn P, Jetten MSM, Robertson LA & Kuenen JG (1995) Anaerobic oxidation of ammonium is a biologically mediated process. Appl. Environ. Microbiol. 61: 1246–1251

    Google Scholar 

  • Van der Palen CJNM, Slotbloom D, Jongejan L, Reijnders WNM, Harms N, Duine JA & Van Spanning RJM (1995) Mutational analysis of mau genes involved in methylamine metabolism in Paracoccus denitrificans. Eur. J. Biochem. 230: 860–871

    Google Scholar 

  • Vannelli T, Logan M, Arciero DM & Hooper AB (1990) Degradation of halogenated aliphatic compounds by the ammonia-oxidizing bacterium Nitrosomonas europaea. Appl. Environ. Microbiol. 56: 1169–1171

    Google Scholar 

  • Vannelli T & Hooper AB (1992) Oxidation of nitrapyrin to 6-chloropicolinic acid by the ammonia-oxidizing bacterium Nitrosomonas europaea. Appl. Environ. Microbiol. 58: 2321–2325

    Google Scholar 

  • — (1993) Reductive dehalogenation of the trichloromethyl group of nitrapyrin by the ammonia-oxidizing bacterium Nitrosomonas europaea. Appl. Environ. Microbiol. 59: 3597–3601

    Google Scholar 

  • Vannelli T (1994) Oxidation of halogenated alkanes, alkenes and aromatics by the ammonia-oxidizing bacterium Nitrosomonas europaea. Doctoral Thesis, University of Minnesota

  • Vannelli T & Hooper AB (1995) NIH shift in the oxidation of aromatic compounds by the ammonia-oxidizing bacterium Nitrosomonas europaea. Evidence against an arene oxide intermediate. Biochem. 34: 11743–11749

    Google Scholar 

  • Vannelli T, Bergmann D, Arciero DM & Hooper AB (1996) Mechanism of N-oxidation and electron transfer in the ammoniaoxidizing autotrophs. In: Lidstrom ME & Tabita FR (Eds) Proceedings of the 8th International Symposium on Microbial Growth on C1 Compounds. Kluwer Academic Publishers, pp. 80–87

  • Voysey PA & Wood PM (1987) Methanol and formaldehyde oxidation by an autotrophic nitrifying bacterium. J. Gen. Microbiol. 33: 283–290

    Google Scholar 

  • Ward B (1987) Kinetic studies on ammonia and methane oxidation by Nitrosococcus oceanus. Arch Microbiol. 147: 126–133

    Google Scholar 

  • Wood PM (1988) Chemolithotrophy. In: Anthony C (Ed) Bacterial Energy Transduction (pp 183–230) Academic Press, London

    Google Scholar 

  • Yamanaka T & Shinra M (1974) Cytochrome c-552 and cytochrome c-554 derived from Nitrosomonas europaea. Purification, properties and their function in hydroxylamine oxidation. J. Biochem. 75: 1265–1273

    Google Scholar 

  • Wehrfritz J-M, Reilly A, Spiro S & Richardson DJ (1993) Purification of hydroxylamine oxidase from Thiosphaera pantotropha, identification of electron acceptors that couple heterotrophic nitrification to aerobic denitrification. FEBS Lett. 335: 246–250

    Google Scholar 

  • Zahn JA, Duncan C & DiSpirito AA (1994) Oxidation of hydroxylamine by cytochroms P-460 of the obligate methylotroph Methylococcus capsulatus Bath. J. Bacteriol. 176: 5879–5887

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hooper, A.B., Vannelli, T., Bergmann, D.J. et al. Enzymology of the oxidation of ammonia to nitrite by bacteria. Antonie Van Leeuwenhoek 71, 59–67 (1997). https://doi.org/10.1023/A:1000133919203

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1000133919203

Navigation