Skip to main content
Log in

Footprint Analysis For Measurements Over A Heterogeneous Forest

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

The air flow and vertical distribution of sources/sinks inside aforest canopy have been taken into accountin the analysis of the contribution of sources/sinks to measured fluxes and concentrations above a forest. Thestochastic estimators for concentrations and fluxes are described and their evaluation is performed by simulationof an ensemble of fluid parcel trajectories. The influence of the forest canopy on the footprint is important forobservation levels up to a few times the forest height. The influence of along-wind turbulent diffusion, whichanalytical atmospheric surface layer (ASL) footprint models do not account for, is significant even at higherlevels. The footprint analysis has been performed to deduce the Douglas fir canopy carbon dioxide uptake from eddycovariance flux measurements above a mixed Douglas fir–beech forest during the pre-leaf periods of the beech.The scatter in the results indicates that such an analysis is limited, presumably due to horizontal inhomogenetiesin flow statistics, which were not included in trajectory simulation. The analysis, however, is useful for theestimation of the qualitative effect of the forest canopy on the footprint function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aubinet, M., Grelle, A., Ibrom, A., Rannik, Ñ., Moncrieff, J., Foken, T., Kowalski, A. S., Martin, P. H., Berbigier, P., Bernhofer, Ch., Clement, R., Elbers, J., Granier, A., Grünwald, T., Morgenstern, K., Pilegaard, K., Rebmann, C., Snijders, W., Valentini, R., and Vesala, T.: 2000, ‘Estimates of the Annual Net Carbon and Water Exchange of Forests: The EUROFLUX Methodology’, Adv. Ecol. Res. 30, 113–175.

    Google Scholar 

  • Baldocchi, D.: 1997, ‘Flux Footprints within and over Forest Canopies’, Boundary-Layer Meteorol. 85, 273–292.

    Google Scholar 

  • Bartelink, H. H.: 1998, Simulation of Growth and Competition in Mixed Stands of Douglas-Fir and Beech, Ph.D. Dissertation, Landbouwuniversiteit Wageningen, 222 pp.

  • Cellier, P. and Brunet, Y.: 1992, ‘Flux-Gradient Relationships above Tall Plant Canopies’, Agric. For. Meteorol. 58, 93–117.

    Google Scholar 

  • De Bruin, H. A. R., Kohsiek, W., and Van Den Hurk, B. J. J. M.: 1993, ‘A Verification of Some Methods to Determine the Fluxes of Momentum, Sensible Heat, and Water Vapour Using Standard Deviation and Structure Parameter of Scalar Meteorological Quantities’, Boundary-Layer Meteorol. 63, 231–257.

    Google Scholar 

  • Finn, D., Lamb, B., Leclerc, M. Y., and Horst, T. W.: 1996, ‘Experimental Evaluation of Analytical and Lagrangian Surface-Layer Footprint Models’, Boundary-Layer Meteorol. 80, 283–308.

    Google Scholar 

  • Flesch, T. K.: 1996, ‘The Footprint for Flux Measurements, from Backward Lagrangian Stochastic Models’, Boundary-Layer Meteorol. 78, 399–404.

    Google Scholar 

  • Flesch, T. K. and Wilson, J. D.: 1992, ‘A Two-Dimensional Trajectory-Simulation Model for Non-Gaussian, Inhomogeneous Turbulence within Plant Canopies’, Boundary-Layer Meteorol. 61, 349–374.

    Google Scholar 

  • Groß, G.: 1993, Numerical Simulation of Canopy Flows, Springer-Verlag, Berlin, 167 pp.

    Google Scholar 

  • Högström, U.: 1988, ‘Non-Dimensional Wind and Temperature Profiles in the Atmospheric Surface Layer: A Reevaluation’, Boundary-Layer Meteorol. 42, 55–78.

    Google Scholar 

  • Horst, T. W. and Weil, J. C.: 1992, ‘Footprint Estimation for Scalar Flux Measurements in the Atmospheric Surface Layer’, Boundary-Layer Meteorol. 59, 279–296.

    Google Scholar 

  • Horst, T. W. and Weil, J. C.: 1994, ‘How Far Is Far Enough?: The Fetch Requirements for Micrometeorological Measurement of Surface Fluxes’, J. Atmos. Oceanic Tech. 11, 1018–1025.

    Google Scholar 

  • Kader, B. A. and Yaglom, A. M.: 1990, ‘Mean Fields and FluctuationMoments in Unstably Stratified Turbulent Boundary Layers’, J. Fluid. Mech. 212, 637–662.

    Google Scholar 

  • Kaimal, J. C. and Finnigan, J. J.: 1994, Atmospheric Boundary Layer Flows. Their Structure and Measurement, Oxford University Press, New York, 289 pp.

    Google Scholar 

  • Kurbanmuradov, O. and Sabelfeld, K. K.: 2000, ‘Stochastic Lagrangian Models for Turbulent Dispersion in Atmospheric Boundary Layer’, Boundary-Layer Meteorol., in press.

  • Kurbanmuradov, O., Rannik, Ñ, Sabelfeld, K. K., and Vesala, T.: 1999, ‘Direct and Adjoint Monte Carlo for the Footprint Problem’, Monte Carlo Meth. Appl. 5, N2, 85–111.

    Google Scholar 

  • Leclerc, M. Y. and Thurtell, G. W.: 1990, ‘Footprint Prediction of Scalar Fluxes Using a Markovian Analysis’, Boundary-Layer Meteorol. 52, 247–258.

    Google Scholar 

  • Monin, A. S. and Yaglom, A. M.: 1975, Statistical FluidMechanics. Vol. 2,M.I.T. Press, Cambridge, MA, 874 pp.

    Google Scholar 

  • Paulson, C. A.: 1970, ‘The Mathematical Representation ofWind Speed and Temperature Profiles in the Unstable Atmospheric Surface Layer’, J. Appl. Meteorol. 9, 857–860.

    Google Scholar 

  • Rannik, Ñ. and Vesala, T.: 1999, ‘Autoregressive Filtering versus Linear Detrending in Estimation of Fluxes by the Eddy Covariance Method’, Boundary-Layer Meteorol. 91, 259–280.

    Google Scholar 

  • Raupach, M. R.: 1988, ‘Canopy Transport Processes’, in W. L. Steffen and O. T. Denmead (eds.), Flow and Transport in Natural Environment: Advances and Applications, Springer-Verlag, Berlin, pp. 95–127.

    Google Scholar 

  • Reynolds, A. M.: 1998, ‘On the Formulation of Lagrangian Stochastic Models of Scalar Dispersion within Plant Canopies’, Boundary-Layer Meteorol. 88, 77–86.

    Google Scholar 

  • Sawford, B. L. and Guest, F. M.:1988, ‘Uniqueness and Universality of Lagrangian Stochastic Models of Turbulent Dispersion’, in Proceedings of the 8th Symposium on Turbulence and Diffusion, AMS, San Diego, pp. 96–99.

  • Schmid, H. P.: 1994, ‘Source Areas for Scalar and Scalar Fluxes’, Boundary-Layer Meteorol. 67, 293–318.

    Google Scholar 

  • Schmid, H. P. and Oke, T. R.: 1990, ‘A Model to Estimate the Source Area Contributing to Turbulent Exchange in the Surface Layer over Patchy Terrain’, Quart. J. Roy. Meteorol. Soc. 116, 965–988.

    Google Scholar 

  • Schuepp, H. P., Leclerc, M. Y., MacPherson, J. I., and Desjardins, R. L.: 1990, ‘Footprint Prediction of Scalar Fluxes from Analytical Solutions of the Diffusion Equation’, Boundary-Layer Meteorol. 50, 355–373.

    Google Scholar 

  • Su, H.-B., Shaw, R. H., Paw U, K. T., Moeng, C.-H., and Sullivan, P. P.: 1998, ‘Turbulent Statistics of Neutrally Stratified Flow within and above a Sparse Forest from Large-Eddy Simulation and Field Observations’, Boundary-Layer Meteorol. 88, 363–397.

    Google Scholar 

  • Thomson, D. J.: 1987, ‘Criteria for the Selection of Stochastic Models of Particle Trajectories in Turbulent Flows’, J. Fluid. Mech. 180, 529–556.

    Google Scholar 

  • Wilson, J. D. and Sawford, B. L.: 1996, ‘Review of Lagrangian Stochastic Models for Trajectories in the Turbulent Atmosphere’, Boundary-Layer Meteorol. 78, 191–210.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rannik, Ü., Aubinet, M., Kurbanmuradov, O. et al. Footprint Analysis For Measurements Over A Heterogeneous Forest. Boundary-Layer Meteorology 97, 137–166 (2000). https://doi.org/10.1023/A:1002702810929

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1002702810929

Navigation