Skip to main content
Log in

Influence of sulfate enrichment on the carbon dioxide and phosphate fluxes across the sediment–water interface

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Fluxes of CO2 and o-P across the sediment-water interfacewere measured adding different amounts of sulfatein order to quantify the influence in these processes againsta control, and using chloramphenicol as an inhibitor ofbacterial activity. These experiments were performed underoxic and anoxic conditions. Results show that the additionof sulfate stimulated the fluxes of CO2 and o-P, whilethe use of chloramphenicol decreased these fluxes. Theratio of o-P release to Org-C release ranged from 1 to 5 underoxic conditions and from 18 to 42 under anoxicconditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barbanti, A., V. U. Ceccherelli, F. Frascari, G. Reggiani & G. Rosso, 1992. Nutrient regeneration processes in bottom sediments in a Po delta lagoon (Italy) and the role of bioturbation on determining the fluxes at the sediment–water interface. Hydrobiologia 228: 1–21.

    Google Scholar 

  • Barbanti, A., M. C. Bergamini, F. Frascari, S. Miserocchi, M. Ratta & G. Rosso, 1995. Diagenetic processes and nutrient fluxes at the sediment–water interface, Northern Adriatic Sea, Italy. Mar. Freshwater Res. 46: 55–67.

    Google Scholar 

  • Boström, B. & K. Peterson, 1982. Different patterns of phosphorus release from lake sediment in laboratory experiments. Hydrobiologia 91/92: 415–429.

    Google Scholar 

  • Caraco, N. F., J. J. Cole & G. E. Likens, 1989. Evidence for sulphate-controlled phosphorus release from sediments of aquatic systems. Nature 341: 316–318.

    Google Scholar 

  • Carignan, R. & A. Tessier, 1988. The co-diagenesis of sulfur and iron in acid lake sediments of Southwestern Quebec. Geochim. Cosmochim. Acta 52: 1179–1188.

    Google Scholar 

  • Clavero, V., 1992. Estudio experimental y modelo de intercambio de fosfato en la interfase sedimento-agua en el Estuario del Río Palmones. Ph.D. dissertation. University of Málaga, 206 pp.

  • Clavero, V., C. M. García, J. A. Fernández & F. X. Niell, 1993. Adsorption-desorption of phosphate and its availability in the sediment of a saline lake (Fuente Piedra, Southern Spain). Int. J. Salt Lake Res. 2: 153–163.

    Google Scholar 

  • Clavero, V., F. X. Niell & J. A. Fernández, 1994. A laboratory study to quantify the influence of Nereis diversicolorO. F. Müller in the exchange of phosphate between sediment and water. J. exp. mar. Biol. Ecol. 176: 257–267.

    Google Scholar 

  • Clavero, V., J. A. Fernández & F. X. Niell, 1996. Intercambio de fosfato y adsorción por el sedimento del Estuario del Río Palmones. Sem.Quim. Mar. (in press).

  • Comeau, Y., K. Y. Hall, R. E. W. Hancock & W. K. Oldhann, 1986. Biochemical model for enhanced biological phosphorus removal. Wat. Res. 20: 1511–1521.

    Google Scholar 

  • Curtis, P. J., 1989. Effects of hydrogen and sulphate in the phosphorus cycle of a Precambrian Shield lake. Nature 337: 156–158.

    Google Scholar 

  • Dilling, W. & H. Cypionka, 1990. Aerobic respiration in sulphatereducing bacteria. FEMS Microbiol. Lett. 71: 123–128.

    Google Scholar 

  • Edwards, G. & D. A. Walker, 1983. C3, C4: Mechanisms, and Cellular Environmental Regulation of Photosynthesis. Blackwell Scientific Publications, Oxford.

    Google Scholar 

  • Fernández, J. A., F. X. Niell & J. Lucena, 1985. A rapid and sensitiveautomated determination of phosphate in natural waters. Limnol. Oceanogr. 30: 227–230.

    Google Scholar 

  • Froelich, P. N., 1988. Kinetic control of dissolved phosphate in natural rivers and estuaries: A primer on the phosphate buffer mechanism. Limnol. Oceanogr. 33: 649–668.

    Google Scholar 

  • Frund, C. & Y. Cohen, 1992. Diurnal cycles of sulphate reduction under oxic conditions in cyanobacterial mats. Appl. envir. Microbiol. 58: 70–72.

    Google Scholar 

  • Golterman, H. L., 1995. The role of the ironhydroxide-phosphate-sulphide system in the phosphate exchange between sediments and overlying water. Hydrobiologia 297: 43–54.

    Google Scholar 

  • Hargrave, B. T. & G. A. Phillips, 1981. Annual in situ carbon dioxide and oxygen flux across a subtidal marine sediment. Estuar. coast. Shelf Sci. 12: 725–737.

    Google Scholar 

  • Jørgensen, B. B., 1977. The sulfur cycle of a coastal marine sediment (Limfjorden, Denmark). Limnol. Oceanogr. 22: 814–831.

    Google Scholar 

  • Kristensen, E., G. M. King, H. Holmer, G. T. Banta, M. H. Jensen, K. Hansen & N. Bussarawit, 1994. Sulfate reduction, acetate turnover and carbon metabolism in sediments of the Ao Nam Bor mangrove, Phuket, Thailand. Mar. Ecol. Progr. Ser. 109: 245–255.

    Google Scholar 

  • Krom, M. D. & R. A. Berner, 1980. Adsorption of phosphate in anoxic sediment. Limnol. Oceanogr. 25: 797–806.

    Google Scholar 

  • López, P., X. Lluch, M. Vidal & J. A. Morgui, 1996. Adsorption of phopshorus in sediments of Balearic Islands (Spain) related to their composition. Estuar. coast. Shelf Sci. 42: 185–196.

    Google Scholar 

  • Martens, C. S. & M. B. Goldhaber, 1978. Early diagenesis in transitionary sedimentary environments of the White Oak Estuary, North. Carolina. Limnol. Oceanogr. 23: 428–441.

    Google Scholar 

  • Mayer, T & S. P. Gloss, 1980. Buffering of silica and phosphate in a turbid river. Limnol. Oceanogr. 25: 12–22.

    Google Scholar 

  • Pérez-Llorens, J. L. & F.X. Niell, 1995. Short-term phosphate uptake kinetics in Zostera noltiiHornem: a comparison between excised leaves and sediment-rooted plants. Hydrobiologia 297: 17–27.

    Google Scholar 

  • Postgate, J. R., 1984. The sulphate reducing bacteria. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Riley, J. P. & R. Chester, 1971. The dissolved gases in sea water. Part 2. In Introduction to Marine Chemistry. Academic Press, London.

    Google Scholar 

  • Sommers, L. E. & D. W. Nelson, 1972. Determination of total phosphorus by a rapid perchloric acid procedure. Soil. Sci. Soc. Am. Proc. 36: 902–904.

    Google Scholar 

  • Sørensen, J., B. B. Jørgensen & N. P. Revsbech, 1979. A comparison of oxygen, nitrate, and sulfate respiration in a coastal marine sediment. Mar. Biol. 5: 105–115.

    Google Scholar 

  • Therkildsen, M. S. & B.A. Lomstein, 1993. Seasonal variation in net benthic C-mineralization in a shallow estuary. FEMBS Microbiol. Ecol. 12: 131–142.

    Google Scholar 

  • Uehlinger, U. & J. Bloesch, 1987. Variation in the C-P ratio of suspended and settling seston and its significance for P uptake calculations. Freshwat. Biol. 17: 99–108.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clavero, V., Garcıa-Sanchez, M.J., Niell, F.X. et al. Influence of sulfate enrichment on the carbon dioxide and phosphate fluxes across the sediment–water interface. Hydrobiologia 345, 59–65 (1997). https://doi.org/10.1023/A:1002962812686

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1002962812686

Navigation