Skip to main content
Log in

Influence of thiourea on the nucleation of copper on polycrystalline platinum

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The influence of thiourea on the nucleation of copper from a 0.30 M CuSO4-1 M H2SO4 solution on polycrystalline platinum electrodes covered by a copper adlayer was investigated. In the case of diffusion controlled nucleation and growth the conditioning potential, that is, the potential of the electrode prior to the application of a large negative potential step, has a strong influence on the nucleation transients. This can result in either a promotion or an inhibition of the nucleation (which is characterized by a change in the nucleation rate constant and/or the site density) depending on the applied potential and the concentration of thiourea. In the region of mixed kinetics and for a fixed value of the conditioning potential (0.175 V vs Cu2+|Cu, that is, in the region of strongest inhibition), a new and rather unexpected effect was observed. Thus, after an induction period, which is proportional to the concentration of thiourea, the current increases sharply to a much higher value, but after reaching a maximum drops again to its original value. At present there is no ready explanation for this phenomenon, which has been called 'nucleation outbursts', but it deserves more investigation because the linearity between the induction time and the concentration of thiourea might have practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. W. Plieth, Electrochim. Acta 37 (1992) 2115.

    Google Scholar 

  2. D.F. Suarez and F.A. Olson, J. Appl. Electrochem. 22 (1992) 1002.

    Google Scholar 

  3. A. Szymaszek, J. Biernat and L. Pajdowski, Electrochim. Acta 22 (1977) 359.

    Google Scholar 

  4. G. Fabricius, Electrochim. Acta 39 (1994) 611.

    Google Scholar 

  5. G. Fabricius, K. Kontturi and G. Sundholm, Electrochim. Acta 39 (1994) 2353.

    Google Scholar 

  6. E. E. Farndon, F. C. Walsh and S. A. Campbell, J. Appl. Electrochem. 25 (1995) 574.

    Google Scholar 

  7. G. Fabricius, K. Kontturi and G. Sundholm, J. Appl. Electrochem. 26 (1996) 1179.

    Google Scholar 

  8. Ph. Javet and E. Hintermann, Electrochim. Acta 14 (1969) 527.

    Google Scholar 

  9. H. M. Ratajczak and L. Pajdowski, J. Inorg. Nucl. Chem. 36 (1974) 459.

    Google Scholar 

  10. A. Szymaszek, J. Biernat and L. Pajdowski, Electrochim. Acta 22 (1977) 359. 7

    Google Scholar 

  11. S. Krzewska and H. Podsiadly, J. Inorg. Nucl. Chem. 42 (1979) 83.

    Google Scholar 

  12. S. Krzewska, L. Pajdowski and H. Podsiadly, J. Inorg. Nucl. Chem. 42 (1979) 87.

    Google Scholar 

  13. S. Krzewska, H. Podsiadly and L. Pajdowski, J. Inorg. Nucl. Chem. 42 (1979) 89.

    Google Scholar 

  14. P. Cofré and A. Bustos, J. Appl. Electrochem. 24 (1994) 564.

    Google Scholar 

  15. M.H. Hölzle, C.W. Apsel, T. Will and D.M. Kolb, J. Electrochem. Soc. 142 (1996) 3741.

    Google Scholar 

  16. I.V. Mironov and L.D. Tsvelodub, J. Sol. Chem. 25 (1996) 315.

    Google Scholar 

  17. C.J. Doona and D.M. Stanbury, Inorg. Chem. 35 (1996) 3210.

    Google Scholar 

  18. G.M. Brown, G.A. Hope, D.P. Schweinsberg and P.M. Fredericks, J. Electroanal. Chem. 380 (1995) 161.

    Google Scholar 

  19. G.M. Brown and G. A. Hope, J. Electroanal. Chem. 413 (1996) 153.

    Google Scholar 

  20. J. Kirchnerová and W. C. Purdy, Anal. Chim. Acta 123 (1981) 83.

    Google Scholar 

  21. M. Wünsche, H. Meyer and R. Schumacher, Electrochim. Acta 40 (1995) 629.

    Google Scholar 

  22. D.P. Bhatt, T. Twomey and W. Plieth, J. Electroanal. Chem. 322 (1992) 279.

    Google Scholar 

  23. L. Heerman and A. Tarallo, J. Electroanal. Chem. 451 (1998) 101.

    Google Scholar 

  24. T. I. Quickenden and Qingzhong Xu, J. Electrochem. Soc. 143 (1996) 1248.

    Google Scholar 

  25. B. Scharifker and G. Hills, Electrochim. Acta 28 (1983) 879.

    Google Scholar 

  26. B. Scharifker and J. Mostany, J. Electroanal. Chem. 177 (1984) 13.

    Google Scholar 

  27. M. Sluyters-Rehbach, J.H.O.J. Wijenberg, E. Bosco and J. H. Sluyters, J. Electroanal. Chem. 236 (1987) 1.

    Google Scholar 

  28. B.H. Loo, Chem. Phys. Lett. 89 (1982) 346.

    Google Scholar 

  29. M. Yan, K. Liu and Z. Jiang, J. Electroanal. Chem. 408 (1996) 225.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tarallo, A., Heerman, L. Influence of thiourea on the nucleation of copper on polycrystalline platinum. Journal of Applied Electrochemistry 29, 585–591 (1999). https://doi.org/10.1023/A:1003410720266

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003410720266

Navigation