Skip to main content
Log in

Nickel ferrite as inert anodes in aluminium electrolysis: Part II Material performance and long-term testing

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The behaviour of three different compositions based on nickel ferrite–nickel oxide–copper cermets was investigated as anode materials in laboratory electrolysis tests for 50h in a conventional cryolite-based electrolyte. The corrosion of the anodes was assumed to be mass transfer controlled and the transfer of impurities into the electrolyte and subsequently into the cathodically deposited metal was studied. The results indicate that the materials corroded in a controlled manner. Mass transfer coefficients of species from the anode to the electrolyte were of the order of 10−4ms−1 while the mass transfer coefficients for transfer of the species from the electrolyte into the deposited metal were of the order of 10−6ms−1. Nickel exhibited significantly lower mass transfer coefficients than those of iron and copper. The extrapolated corrosion rates of the anode ranged 1.2–2.0 cm year−1, which is acceptable from an industrial perspective. The contamination of the deposited aluminium with respect to Ni and Cu was, however, too high to meet current specifications for commercial grade metal. Post-electrolysis examination of the anodes showed that a reaction layer of approximately 50μm thickness was formed on the anodes. This layer did not contain any metal grains and seemed to prevent preferential corrosion of the metal phase in the underlying cermet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. H. Alder, US Pat. 3.960.678 (1976).

  2. V. deNora, P. M. Spaziante and A. Nidola, US Pat. 4.098.669 (1978).

  3. K. Yamada, T. Hashimoto and K. Horinouchi, UK Pat. 1.146.155 (1977).

  4. J. D. Weyand, D. H. DeYoung, S. P. Ray, G. P. Tarcy and F. W. Baker, 'Inert Anodes for Aluminium Smelting, Final Report', Aluminium Company of America, Alcoa Laboratories, Alcoa Center, DOE/CS/ 40158-20, Idaho Operation Office, Idaho Falls, ID (1986).

    Google Scholar 

  5. C. F. Windisch and S. C. Marschman, 'Electrochemical Polarization Studies on Cu and Cu-containing Cermet Anodes for the Aluminium Industry', Battelle-PNL report No. PNL-SA-14299, Pacific Northwest Laboratories, Richland, WA, USA (1986).

    Google Scholar 

  6. C. F. Windisch, J. Electrochem. Soc. 138 (1991) 2027.

    Google Scholar 

  7. C. F. Windisch and N. D. Stice, 'Report on the Source of the Electrochemical Impedance on Cermet Inert Anodes', Battelle-PNL report No. PNL-7629, Pacific Northwest Laboratories, Richland, WA, USA (1991).

    Google Scholar 

  8. C. F. Windisch and N. D. Stice, 'Final Report on the Characterization of the Film on Inert Anodes', BattellePNL report No. PNL-7589, Pacific Northwest Laboratory, Richland, WA, USA (1991).

    Google Scholar 

  9. C. F. Windisch and N. D. Stice, 'Laboratory-Scale Testing of Non-Consumable Anode Materials', Battelle Pacific Northwest Laboratories, Richland, WA, PNL-6805 (1989).

    Google Scholar 

  10. E. Olsen and J. Thonstad, 'Nickel ferrite as inert anodes in aluminium electrolysis: Part I Material fabrication and preliminary testing', J. Applied Electrochem 29 (1999) 293–299.

    Google Scholar 

  11. E. Olsen, 'Nickel Ferrite and Tin Oxide as Anode Materials for Aluminium Production', Dr. Ing. thesis, University of Trondheim, Trondheim, Norway (1995).

    Google Scholar 

  12. G. P. Tarcy, Conference paper, Light Metals 1986, (edited by R. E. Miller), the Minerals Metals and Materials Soc., Warrendale, PA (1986) pp. 309–320.

  13. C. M. Hall, US patent No. 400.766 (1889).

  14. E. Olsen, Graduation thesis, Norwegian Inst. of Technology (1991).

  15. J. W. Evans and R. Keller, 'Factors Affecting the Life Time of Inert anodes for Aluminum Electrolysis', Electrochem. Soc. meeting Extended abstract No. 653, Pennington, NJ, (1986) p. 966.

  16. J. D. DeYoung, Conference paper, Light Metals 1986 (edited by R. E. Miller), The Minerals Metals and Materials Soc., Warrendale, PA (1986) pp. 209–309.

  17. M. Sù rlie and H. A. éye, 'Cathodes in Aluminium Electrolysis', 2nd edn, Aluminium-Verlag, DuÈ sseldorf (1994).

  18. S. P. Ray, Conference paper, Light Metals 1986 (edited by R. E. Miller), The Minerals Metals and Materials Soc., Warrendale, PA (1986) pp. 287–298.

  19. E. Olsen and J. Thonstad, Conference paper, Light Metals 1996 (edited by W. Hale), The Minerals, Metals and Materials Soc., Warrendale, PA (1996) pp. 249–258.

  20. P. C. Chin, 'The behavior of impurity species in Hall-Heroult aluminum cells', Ph.D. Thesis, Carnegie Mellon University, Pittsburgh, PA, USA (1992).

    Google Scholar 

  21. D. H. Zöllner and H. Hahn, Ö fenlegungsschrift DE 3537575 Al, 22 Oct (1995).

  22. H. Alder, Us patent 3.960.678 (1976).

  23. K. Yamada, T. Hashimoto and K. Horinouchi, UK patent 1.146.155 (1977).

  24. H. Alder, US patent 4.357.226 (1982).

  25. K. Horinouchi, N. Tahikawa and K. Yamada, Proceedings of the first international symposium on Molten Salt Chem. and Techn., Kyoto (1983) p. 66

  26. D. R. Sadoway, Conference paper, Light Metals 1990 (edited by C. M. Bickert), The Minerals, Metals and Materials Soc., Warrendale, PA (1990) pp. 403–407.

  27. A. D. McLeod, J-M Lihrmann, J. S. Haggarty and D. R. Sadoway, Light Metals 1987, The Minerals, Metals and Materials Soc., Warrendale, PA (1987) pp 357–365.

  28. T. R. Beck and R. J. Brooks, US patent 5.006.209

  29. J. N. Hryn and D. R. Sadoway, Light Metals 1993, The Minerals, Metals and Materials Soc., Warrendale, PA (1993) pp. 475–483.

  30. C. Zöllner, 'Dimensionsstabile Elektroden für die Schmelzflusselektrolyse', Berichtsnummer BMFT-FB-T 85 186, Bundesministerium für Forscung und Technologie, Bonn, Germany (1985).

    Google Scholar 

  31. H. Zhang, V. De Nora and J. A. Sekhar, 'Materials Used in the Hall-Heroult Cell for Aluminium Production', The Minerals Metals and Materials Soc., Warrendale, PA (1994).

  32. A. I. Belyaev and A. E. Studentsov, Legkie Metally 6(3) (1937) 17.

    Google Scholar 

  33. A. I. Belyaev and A. E. Studentsov, Legkie Metally 8(1) (1938) 7.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olsen, E., Thonstad, J. Nickel ferrite as inert anodes in aluminium electrolysis: Part II Material performance and long-term testing. Journal of Applied Electrochemistry 29, 301–311 (1999). https://doi.org/10.1023/A:1003464304488

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003464304488

Navigation