Skip to main content
Log in

Flow cytometry in molecular aquatic ecology

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

In working towards understanding ecosystems that are often dominated by microorganisms, aquatic ecologists have historically relied on measuring bulk, community-level properties and synecological processes. However, developing a mechanistic and predictive explanation for the factors structuring aquatic ecosystems will require understanding the roles that individual microorganisms play in these higher-order phenomena. The application of molecular biological techniques to examine nucleic acids extracted in bulk from microbial communities can provide information about the taxonomic structure of microbial communities and the physiological ecology of particular types of organisms at various levels of specificity. Yet, even if accomplished at the ‘species’ level, these data still represent bulk parameters because they can reveal only an average value for the organisms and community of interest. A more detailed view may be gained by investigations performed at a single-cell level. Flow cytometry allows the measurement of one cell at a time, at a rate of thousands of cells per second. When combined with fluorescent stains, including nucleic acid and antibody-based molecular probes, flow cytometry permits rapid analysis of cell-specific information for particular types of microbes within complex microbial assemblages. Thus, the autecology of microbial populations and structure of microbial communities can be examined from the vantage point of the individual cells comprising them. By bringing the level of analysis closer to the relevant scale of the organisms being investigated, the combination of molecular tools and flow cytometry will bring powerful new insights into the autecology of aquatic microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alfreider, A., J. Pernthaler, R. Amann, B. Sattler, F.-O. Glockner, A. Wille & R. Psenner, 1996. Community analysis of the bacterial assemblages in the winter cover and pelagic layers of a high mountain lake by in situ hybridization. Appl. envir. Microbiol. 62: 2138–2144.

    Google Scholar 

  • Amann, R., F.-O. Glockner & A. Neef, 1997a. Modern methods in subsurface microbiology: in situ identification of microorganisms with nucleic acid probes. FEMS Microbiol. Rev. 20: 191–200.

    Google Scholar 

  • Amann, R., J. Snaidr, M. Wagner, W. Ludwig & K.-H. Schleifer, 1996. In situ visualization of high genetic diversity in a natural microbial community. J. Bact. 178: 3496–3500.

    Google Scholar 

  • Amann, R., N. Springer, W. Schonhuber, W. Ludwig, E. N. Schmid, K.-D. Muller & R. Michel, 1997b. Obligate intracellular bacterial parasites of Acanthamoebae related to Chlamydia spp. Appl. envir. Microbiol. 63: 115–121.

    Google Scholar 

  • Amann, R. I., L. Krumholz & D. A. Stahl, 1990a. Fluorescentoligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology. J. Bact. 172: 762–770.

    Google Scholar 

  • Amann, R. I., W. Ludwig & K.-H. Schleifer, 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59: 143–169.

    Google Scholar 

  • Amann, R. I., B. J. Binder, R. J. Olson, S. W. Chisholm, R. Devereux & D. A. Stahl, 1990b. Combination of 16S rRNAtargeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl. envir. Microbiol. 56: 1919–1925.

    Google Scholar 

  • Assmus, B., P. Hutzler, G. Kirchhof, R. Amann, J. R. Lawrence & A. Hartmann, 1995. In situ localization of Azospirillum brasilense in the rhizosphere of wheat with fluorescently labeled, rRNA-targeted oligonucleotide probes and scanning confocal laser microscopy. Appl. envir. Microbiol. 61: 1013–1019.

    Google Scholar 

  • Atlas, R. M., G. Sayler, R. S. Burlage & A. K. Bej, 1992. Molecular approaches for environmental monitoring of microorganisms. BioTechniques 12: 706–717.

    Google Scholar 

  • Ault, K. A., 1991. Calibration and quantitative analysis. In S. Demers (ed.), Particle Analysis in Oceanography, NATO ASI Series, G27. Springer-Verlag, Berlin: 47–58.

    Google Scholar 

  • Azam, F., T. Fenchel, J. G. Field, J. S. Gray, L. A. Meyer-Reil & F. Thingstad, 1983. The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser. 10: 257–263.

    Google Scholar 

  • Barcina, I., P. Lebaron & J. Vives-Rego, 1997. Survival of allochthonous bacteria in aquatic systems: a biological approach. FEMS Microbiol. Ecol. 23: 1–9.

    Google Scholar 

  • Barkay, T., C. Liebert & M. Gillman, 1989. Hybridization of DNA probes with whole-community genome for detection of genes that encode microbial responses to pollutants: mer genes and Hg2+ resistance. Appl. envir. Microbiol. 55: 1574–1577.

    Google Scholar 

  • Bohlool, B. B. & E. L. Schmidt, 1980. The immunofluorescence approach in microbial ecology. Adv. microb. Ecol. 4: 203–241.

    Google Scholar 

  • Bougrier, S., A. J. S. Hawkins & M. Heral, 1997. Preingestive selection of different microalgal mixtures in Crassostrea gigas and Mytilus edulis, analyzed by flow cytometry. Aquaculture 150: 123–134.

    Google Scholar 

  • Britschgi, T. B. & S. J. Giovannoni, 1991. Phylogenetic analysis of a natural marine bacterioplankton population by rRNA gene cloning and sequencing. Appl. envir. Microbiol. 57: 1707–1713.

    Google Scholar 

  • Button, D. K. & B. R. Robertson, 1993. Use of high-resolution flow cytometry to determine the activity and distribution of aquatic bacteria. In Kemp P. F. (ed.), Handbook of Methods in Aquatic Microbial Ecology. CRC Press, Inc., Boca Raton, Florida: 163–173.

    Google Scholar 

  • Button, D. K., B. R. Robertson & F. Juttner, 1996. Microflora of a subalpine lake: bacterial populations, size and DNA distributions, and their dependence on phosphate. FEMS Microbiol. Ecol. 21: 87–101.

    Google Scholar 

  • Campbell, L. & E. J. Carpenter, 1987. Characterization of phycoerythrin-containing Synechococcus spp. populations by immunofluorescence. J. Plankton Res. 9: 1167–1181.

    Google Scholar 

  • Campbell, L. & R. Iturriaga, 1988. Identification of Synechococcus spp. in the Sargasso Sea by immunofluorescence and fluorescence excitation spectroscopy performed on individual cells. Limnol. Oceanogr. 33: 1196–1201.

    Google Scholar 

  • Campbell, L. & D. Vaulot, 1993. Photosynthetic picoplankton community structure in the subtropical North Pacific Ocean near Hawaii (Station ALOHA). Deep Sea Res. 40: 2043–2060.

    Google Scholar 

  • Campbell, L., E. J. Carpenter & V. J. Iacono, 1983. Identification and enumeration of marine chroococcoid cyanobacteria by immunofluorescence. Appl. envir. Microbiol. 46: 553–559.

    Google Scholar 

  • Campbell, L., H. A. Nolla & D. Vaulot, 1994a. The importance of Prochlorococcus to community structure in the central North Pacific Ocean. Limnol. Oceanogr. 39: 954–961.

    Google Scholar 

  • Campbell, L., L. P. Shapiro & E. Haugen, 1994b. Immunochemical characterization of eukaryotic ultraplankton from the Atlantic and Pacific Oceans. J. Plankton Res. 16: 35–51.

    Google Scholar 

  • Campbell, L., H. Liu, H. A. Nolla & D. Vaulot, 1997. Annual variability of phytoplankton and bacteria in the subtropical North Pacific Ocean and Station ALOHA during the 1991–1994 ENSO event. Deep Sea Res. 44: 167–192.

    Google Scholar 

  • Carpenter, E. J. & J. Chang, 1988. Species-specific phytoplankton growth rates via diel DNA synthesis cycles. I. Concept of the method. Mar. Ecol. Prog. Ser. 43: 105–111.

    Google Scholar 

  • Chandler, D. P., S.-M. Li, C. M. Spadoni, G. R. Drake, D. L. Balkwill, J. K. Fredrickson & F. J. Brockman, 1997. A molecular comparison of culturable aerobic heterotrophic bacteria and 16S rDNA clones derived from a deep subsurface sediment. FEMS Microbiol. Ecol. 23: 131–144.

    Google Scholar 

  • Chen, F. & C. A. Suttle, 1995. Amplification of DNA polymerase gene fragments from viruses infecting microalgae. Appl. envir. Microbiol. 61: 1274–1278.

    Google Scholar 

  • Cucci, T. L., S. E. Shumway, W. S. Brown & C. R. Newell, 1989. Using phytoplankton and flow cytometry to analyze grazing by marine organisms. Cytometry 10: 659–669.

    Google Scholar 

  • Davey, H. M. & D. B. Kell, 1996. Flow cytometry and cell sorting of heterogeneous microbial populations: the importance of singlecell analyses. Microbiol. Rev. 60: 641–696.

    Google Scholar 

  • del Giorgio, P. A., Y. T. Prairie & D. F. Bird, 1997. Coupling between rates of bacterial production and the abundance of metabolically active bacteria in lakes, enumerated using CTC reduction and flow cytometry. Microb. Ecol. 34: 144–154.

    Google Scholar 

  • del Giorgio, P. A., D. F. Bird, Y. T. Prairie & D. Planas, 1996. Flow cytometric determination of bacterial abundance in lake plankton with the green nucleic acid stain SYTO 13. Limnol. Oceanogr. 41: 783–789.

    Google Scholar 

  • DeLeo, P. C. & P. Baveye, 1996. Enumeration and biomass estimation of bacteria in aquifer microcosm studies by flow cytometry. Appl. envir. Microbiol. 62: 4580–4586.

    Google Scholar 

  • DeLong, E. F., 1992. Archaea in coastal marine environments. Proc. natn. Acad. Sci. U.S.A. 89: 5685–5689.

    Google Scholar 

  • DeLong, E. F., G. S. Wickham & N. R. Pace, 1989. Phylogenetic stains: ribosomal RNA-based probes for the identification of single cells. Science 243: 1360–1363.

    Google Scholar 

  • Dixon, B. R., M. Parenteau, C. Martineau & J. Fournier, 1997. A comparison of conventional microscopy, immunofluorescence microscopy and flow cytometry in the detection of Giardia lamblia cysts in beaver fecal samples. J. imm. Meth. 202: 27–33.

    Google Scholar 

  • Donnelly, C. W. & G. J. Baigent, 1986. Method for flow cytometric detection of Listeria monocytogenes in milk. Appl. envir. Microbiol. 52: 689–695.

    Google Scholar 

  • Dubelaar, G. B. J., A. C. Greonewegen, W. Stokdijk, G. J. van den Engh & J. W. M. Visser, 1989. Optical plankton analyser: a flow cytometer for plankton analysis, II: specifications. Cytometry 10: 529–539.

    Google Scholar 

  • Dusenberry, J. A. & S. L. Frankel, 1994. Increasing the sensitivity of a FACScan flow cytometer to study oceanic picoplankton. Limnol. Oceanogr. 39: 206–209.

    Google Scholar 

  • Dyhrman, S. T. & B. P. Palenik, 1997. The identification and purification of a cell-surface alkaline phosphatase from the dino-flagellate Prorocentrum minimum (Dinophyceae). J. Phycol. 33: 602–612.

    Google Scholar 

  • Edwards, C., J. Diaper & J. Porter, 1996. Flow cytometry for the targeted analysis of the structure and function of microbial populations. In Pickup R. W. & J. R. Saunders (eds), Molecular Approaches to Environmental Microbiology. Ellis Horwood Limited, Cambridge: 137–162.

    Google Scholar 

  • Erhart, R., D. Bradford, R. J. Seviour, R. Amann & L. L. Blackall, 1997. Development and use of fluorescent in situ hybridization probes for the detection and identification of "Microthrix parvicella" in activated sludge. System. apl. Microbiol. 20: 310–318.

    Google Scholar 

  • Faber, M. J., L. M. J. Smith, H. J. Boermans, G. R. Stevenson, D. G. Thompson & K. R. Solomon, 1997. Cryopreservation of fluorescent marker-labeled algae (Selenastrum capricornutum) for toxicity testing using flow cytometry. Envir. Tox. Chem. 16: 1059–1067.

    Google Scholar 

  • Falkowski, P. G. & J. LaRoche, 1991. Molecular biology in studies of ocean processes. Int. Rev. Cytol. 128: 261–303.

    Google Scholar 

  • Ferris, M. J., A. L. Ruff-Roberts, E. D. Kopczynski, M. M. Bateson & D. M. Ward, 1996. Enrichment culture and microscopy conceal diverse thermophilic Synechococcus populations in a single hot spring microbial mat habitat. Appl. envir. Microbiol. 62: 1045–1050.

    Google Scholar 

  • Fischer, K., D. Hahn, R. I. Amann, O. Daniel & J. Zeyer, 1995. In situ analysis of the bacterial community in the gut of the earthworm Lumbricus terrestris L. by whole-cell hybridization. Can. J. Microbiol. 41: 666–673.

    Google Scholar 

  • Fouchet, P., C. Jayat, Y. Hechard, M.-H. Ratinaud & G. Frelat, 1993. Recent advances of flow cytometry in fundamental and applied microbiology. Biol. Cell. 78: 95–109.

    Google Scholar 

  • Frischer, M. E., P. J. Floriani & S. A. Nierzwicki-Bauer, 1996. Differential sensitivity of 16S rRNA targeted oligonucleotide probes used for fluorescence in situ hybridization is a result of ribosomal higher order structure. Can. J. Microbiol. 42: 1061–1071.

    Google Scholar 

  • Fuhrman, J. A., K. McCallum & A. A. Davis, 1993. Phylogenetic diversity of subsurface marine microbial communities from the Atlantic and Pacific Oceans. Appl. envir. Microbiol. 59: 1294–1302.

    Google Scholar 

  • Giovannoni, S. J., T. D. Mullins & K. G. Field, 1995. Microbial diversity in oceanic systems: rRNA approaches to the study of unculturable microbes. In Joint I. (ed.), Molecular Ecology of Aquatic Microbes, NATO ASI Series, G38. Springer-Verlag, Berlin: 217–248.

    Google Scholar 

  • Giovannoni, S. J., T. B. Britschgi, C. L. Moyer & K. G. Field, 1990. Genetic diversity in Sargasso Sea bacterioplankton. Nature 344: 60–63.

    Google Scholar 

  • Giovannoni, S. J., E. F. DeLong, G. J. Olsen & N. R. Pace, 1988. Phylogenetic group-specific oligonucleotide probes for identification of single microbial cells. J. Bact. 170: 720–726.

    Google Scholar 

  • Glockner, F. O., R. Amann, A. Alfreider, J. Pernthaller, R. Psenner, K. Trebesius & K.-H. Schleifer, 1996. An in situ hybridization protocol for detection and identification of planktonic bacteria. System. appl. Microbiol. 19: 403–406.

    Google Scholar 

  • Goericke, R. & D. J. Repeta, 1993. Chlorophylls a and b and divinyl chlorophylls a and b in the open subtropical North Atlantic Ocean. Mar. Ecol. Prog. Ser. 101: 307–313.

    Google Scholar 

  • Hahn, D., R. I. Amann, W. Ludwig, A. D. L. Akkermans & K.-H. Schleifer, 1992. Detection of microorganisms in soil after in situ hybridization with rRNA-targeted, fluorescently labelled oligonucleotides. J. gen. Microbiol. 138: 879–887.

    Google Scholar 

  • Harmsen, H. J. M., D. Prieur & C. Jeanthon, 1997. Groupspecific 16S rRNA-targeted oligonucleotide probes to identify thermophilic bacteria in marine hydrothermal vents. Appl. envir. Microbiol. 63: 4061–4068.

    Google Scholar 

  • Hauer, B. & H. Eipel, 1997. Flow Cytometry. Useful tool for analyzing bacterial populations cell by cell. In Shapiro J. A. & M. Dworkin (eds), Bacteria as Multicellular Organisms. Oxford University Press, New York: 273–291.

    Google Scholar 

  • Hicks, R. E., R. I. Amann & D. A. Stahl, 1992. Dual staining of natural bacterioplankton with 40,6-diamidino-2-phenylindole and fluorescent oligonucleotide probes targeting kingdom-level 16S rRNA sequences. Appl. envir. Microbiol. 58: 2158–2163.

    Google Scholar 

  • Hobbie, J. E., R. J. Daley & S. Jasper, 1977. Use of Nucleopore filters for counting bacteria by fluorescence microscopy. Appl. envir. Microbiol. 33: 1225–1228.

    Google Scholar 

  • Hodson, R. E., W. A. Dustman, R. P. Garg & M. A. Moran, 1995. In situ PCR for visualization of microscale distribution of specific genes and gene products in prokaryotic communities. Appl. envir. Microbiol. 61: 4074–4082.

    Google Scholar 

  • Joux, F., P. Lebaron & M. Troussellier, 1997a. Changes in cellular states of the marine bacterium Deleya aquamarina under starvation conditions. Appl. envir. Microbiol. 63: 2686–2694.

    Google Scholar 

  • Joux, F., P. Lebaron & M. Troussellier, 1997b. Succession of cellular states in a Salmonella typhimurium population during starvation in artificial seawater microcosms. FEMS Microbiol. Ecol. 22: 65–76.

    Google Scholar 

  • Kampfer, P., R. Erhart, C. Beimfohr, J. Bohringer, M. Wagner & R. Amann, 1996. Characterization of bacterial communities from activated sludge: culture-dependent numerical identification versus in situ identification using group-and genus-specific rRNA-targeted oligonucleotide probes. Microb. Ecol. 32: 101–121.

    Google Scholar 

  • Kaprelyants, A. S., G. V. Mulkamolova, H. M. Davey & D. B. Kell, 1996. Quantitative analysis of the physiological heterogeneity within starved cultures of Micrococcus luteus by flow cytometry and cell sorting. Appl. envir. Microbiol. 62: 1311–1316.

    Google Scholar 

  • Kirshtein, J. D., H.W. Paerl & J. Zehr, 1991. Amplification, cloning, and sequencing of a nifH segment from aquatic microorganisms and natural communities. Appl. envir. Microbiol. 57: 2645–2650.

    Google Scholar 

  • La Roche, J., P. W. Boyd, R. M. L. McKay & R. J. Geider, 1996. Flavodoxin as an in situ marker for iron stress in phytoplankton. Nature 382: 802–805.

    Google Scholar 

  • La Roche, J., H. Murray, M. Orellana & J. Newton, 1995. Flavodoxin expression as as indicator of iron limitation in marine diatoms. J. Phycol. 31: 520–530.

    Google Scholar 

  • Landry, M. R., J. Constantinou & J. Kirshtein, 1995. Microzooplankton grazing in the central equatorial Pacific during February and August, 1992. Deep Sea Res. 42: 657–671.

    Google Scholar 

  • Lange, J. L., P. S. Thorne & N. Lynch, 1997. Application of flow cytometry and fluorescent in situ hybridization for assessment of exposures to airborne bacteria. Appl. envir. Microbiol. 63: 1557–1563.

    Google Scholar 

  • Lange, M., L. Guillou, D. Vaulot, N. Simon, R. I. Amann, W. Ludwig & L. K. Medlin, 1996. Identification of the class Prymnesiophyceae and the genus Phaeocystis with ribosomal RNA-targeted nucleic acid probes detected by flow cytometry. J. Phycol. 32: 858–868.

    Google Scholar 

  • Lebaron, P., P. Catala, C. Fajon, F. Joux, J. Baudart & L. Bernard, 1997. A new sensitive, whole-cell hybridization technique for detection of bacteria involving a biotinylated oligonucleotide probe targeting rRNA and tyramide signal amplification. Appl. envir. Microbiol. 63: 3274–3278.

    Google Scholar 

  • Lechner, S. & R. Conrad, 1997. Detection in soil of aerobic hydrogen-oxidizing bacteria related to Alcaligenes eutrophus by PCR and hybridization assays targeting the gene of the membrane-bound (NiFe) hydrogenase. FEMS Microbiol. Ecol. 22: 193–206.

    Google Scholar 

  • Lee, K.-H. & E. G. Ruby, 1995. Symbiotic role of the viable but nonculturable state of Vibrio fischeri in Hawaiian coastal seawater. Appl. envir. Microbiol. 61: 278–283.

    Google Scholar 

  • Lee, S. & P. F. Kemp, 1994. Single-cell RNA content of natural marine planktonic bacteria measured by hybridization with multiple 16S rRNA-targeted fluorescent probes. Limnol. Oceanogr. 39: 869–879.

    Google Scholar 

  • Lee, S., C. Malone & P. F. Kemp, 1993. Use of multiple 16S rRNA-targeted fluorescent probes to increase signal strength and measure cellular RNA from natural planktonic bacteria. Mar. Ecol. Prog. Ser. 101: 193–201.

    Google Scholar 

  • Lee, S.-Y., J. Bollinger, D. Bezdicek & A. Ogram, 1996. Estimation of the abundance of an uncultured soil bacterial strain by a competitive quantitative PCR method. Appl. envir. Microbiol. 62: 3787–3793.

    Google Scholar 

  • Legendre, L. & C. M. Yentsch, 1989. Overview of flow cytometry and image analysis in biological oceanography and limnology. Cytometry 10: 501–510.

    Google Scholar 

  • Lepasteur, M., J.M. Martin & A. Fleury, 1993. A comparative study of different preservation methods for phytoplankton cell analysis by flow cytometry. Mar. Ecol. Prog. Ser. 93: 55–63.

    Google Scholar 

  • Li, W. K. W., 1994. Primary production of prochlorophytes, cyanobacteria, and eucaryotic ultraphytoplankton: measurements from flow cytometric sorting. Limnol. Oceanogr. 39: 169–175.

    Google Scholar 

  • Li, W. K. W., 1995. Composition of ultraphytoplankton in the central North Atlantic. mar. Ecol. Prog. Ser. 122: 1–8.

    Google Scholar 

  • Li, W. K. W., J. F. Jellett & P. M. Dickie, 1995. DNA distributions in planktonic bacteria stained with TOTO or TO-PRO. Limnol. Oceanogr. 40: 1485–1495.

    Google Scholar 

  • Lim, E. L., D. A. Caron & E. F. DeLong, 1996. Development and field application of a quantitative method for examining natural assemblages of protists with oligonucleotide probes. Appl. envir. Microbiol. 62: 1416–1423.

    Google Scholar 

  • Lim, E. L., L. A. Amaral, D. A. Caron & E. F. DeLong, 1993. Application of rRNA-based probes for observing marine nanoplankton protists. Appl. envir. Microbiol. 59: 1647–1655.

    Google Scholar 

  • Lindell, D. & A. F. Post, 1995. Ultraphytoplankton succession is triggered by deep winter mixing in the Gulf of Aqaba (Eilat), Red Sea. Limnol. Oceanogr. 40: 1130–1141.

    Google Scholar 

  • Lindell, D., E. Padan & A. F. Post, 1998a. Regulation of ntcA expression and nitrite uptake in the marine Synechococcus sp. Strain WH 7803. J. Bact. 180: 1878–1886.

    Google Scholar 

  • Lindell, D., E. Padan, B. Lazar & A. Post, 1998b. ntcA, an indicator gene for the N status of marine Synechococcus. EOS Supplement 79(1).

  • Lipschultz, F., 1995. Nitrogen-specific uptake rates of marine phytoplankton isolated from natural populations of particles by flow cytometry. Mar. Ecol. Prog. Ser. 123: 245–258.

    Google Scholar 

  • Lischewski, A., R. I. Amann, D. Harmsen, H. Merkert, J. Hacker & J. Morschhauser, 1996. Specific detection of Candida albicans and Candida tropicalis by fluorescent in situ hybridization with an 18S rRNA-targeted oligonucleotide probe. Microbiology 142: 2731–2740.

    Google Scholar 

  • Liu, H., H. A. Nolla & L. Campbell, 1997. Prochlorococcus growth rate and contribution to primary production in the equatorial and subtropical North Pacific Ocean. Aquat. microb. Ecol. 12: 39–47.

    Google Scholar 

  • Lloyd, D., 1993. Flow Cytometry in Microbiology. Springer Verlag, London, 188 pp.

    Google Scholar 

  • Lloyd, D., A. G. Williams, R. Amann, A. J. Hayes, L. Durrant & J. R. Ralphs, 1996. Intracellular prokaryotes in rumen ciliate protozoa: detection by confocal laser scanning microscopy after in situ hybridization with fluorescent 16S rRNA probes. European J. Protistol. 32: 523–531.

    Google Scholar 

  • Magarinos, B., J. L. Romalde, A. Cid & A. E. Toranzo, 1997. Viability of starved Pasteurella piscicida in seawater monitored by flow cytometry and the effect of antibiotics on its resuscitation. Lett. appl. Microbiol. 24: 122–126.

    Google Scholar 

  • Manz, W., M. Wagner, R. Amann & K.-H. Schleifer, 1994. In situ characterization of the microbial consortia active in two wastewater treatment plants. Wat. Res. 28: 1715–1723.

    Google Scholar 

  • Manz, W., R. Amann, W. Ludwig, M. Wagner & K.-H. Schleifer, 1992. Phylogenetic oligonucleotide probes for the major subclasses of proteobacteria: problems and solutions. System. appl. Microbiol. 15: 593–600.

    Google Scholar 

  • Manz, W., R. Amann, W. Ludwig, M. Vancanneyt & K.-H. Schleifer, 1996. Application of a suite of 16S rRNA-specific oligonucleotide probes designed to investigate bacteria of the phylum cytophaga-flavobacter-bacteroides in the natural environment. Microbiology 142: 1097–1106.

    Google Scholar 

  • Marie, D., D. Vaulot & F. Partensky, 1996. Application of the novel nucleic acid dyes YOYO-1, YO-PRO-1, and PicoGreen for flow cytometric analysis of marine prokaryotes. Appl. envir. Microbiol. 62: 1649–1655.

    Google Scholar 

  • Marie, D., F. Partensky, S. Jacquet & D. Vaulot, 1997. Enumeration and cell cycle analysis of natural populations of marine picoplankton by flow cytometry using the nucleic acid stain SYBR Green I. Appl. envir. Microbiol. 63: 186–193.

    Google Scholar 

  • Medlin, L. & N. Simon, 1998. Phylogenetic analysis of marine phytoplankton. In K. E. Cooksey (ed.), Molecular Approaches to the Study of the Ocean. Chapman and Hall, London: 161–186.

    Google Scholar 

  • Meier, H., C. Koob, W. Ludwig, R. Amann, E. Frahm, S. Hoffmann, U. Obst & K.-H. Schleifer, 1997. Detection of enterococci with rRNA targeted DNA probes and their use for hygenic drinking water control. Wat. Sci. Technol. 35: 437–444.

    Google Scholar 

  • Moller, S., C. Sternberg, J. B. Andersen, B. B. Christensen, J. L. Ramos, M. Givskov & S. Molin, 1998. In situ gene expression in mixed-culture biofilms: evidence of metabolic interactions between community members. Appl. envir. Microbiol. 64: 721–732.

    Google Scholar 

  • Moore, L. R., G. Rocap & S. W. Chisholm, 1998. Physiology and molecular phylogeny of coexisting Prochlorococcus ecotypes. Nature 393: 464–467.

    Google Scholar 

  • Moran, M. A., V. L. Torsvik, T. Torsvik & R. E. Hodson, 1993. Direct extraction and purification of rRNA for ecological studies. Appl. envir. Microbiol. 59: 915–918.

    Google Scholar 

  • Mouawad, R., D. Khayat, A. Zerrouqi, A. M. Ghoumari & C. Soubrane, 1997. A flow cytometric method for the rapid detection of β-galactosidase transfected cells: an in vitro and in vivo study. J. imm. Meth. 204: 51–56.

    Google Scholar 

  • Neef, A., A. Zaglauer, H. Meier, R. Amann, H. Lemmer & K.-H. Schleifer, 1996. Population analysis in a denitrifying sand filter: conventional and in situ identification of Paracoccus spp. in methanol-fed biofilms. Appl. envir. Microbiol. 62: 4329–4339.

    Google Scholar 

  • Nubel, U., F. Garcia-Pichel & G. Muyzer, 1997. PCR primers to amplify 16S rRNA gene from cyanobacteria. Appl. envir. Microbiol. 63: 3327–3332.

    Google Scholar 

  • Nubel, U., B. Engelen, A. Felske, J. Snaidr, A. Wieshuber, R. I. Amann, W. Ludwig & H. Backhaus, 1996. Sequence heterogeneities of genes encoding 16S rRNAs in Paenibacillus polymyxa detected by temperature gradient gel electrophoresis. J. Bact. 178: 5636–5643.

    Google Scholar 

  • Olson, R. J., E. R. Zettler & O. K. Anderson, 1989. Discrimination of eukaryotic phytoplankton cell types from light scatter and autofluorescence properties measured by flow cytometry. Cytometry 10: 636–643.

    Google Scholar 

  • Olson, R. J., E. R. Zettler & M. D. DuRand, 1993. Phytoplankton analysis using flow cytometry. In Kemp P. F. (ed.), Handbook of Methods in Aquatic Microbial Ecology. CRC Press, Inc., Boca Raton, Florida: 175–186.

    Google Scholar 

  • Olson, R. J., S. W. Chisholm, E. R. Zettler & E. V. Armbrust, 1990. Pigments, size, and distribution of Synechococcus in the North Atlantic and Pacific Oceans. Limnol. Oceanogr. 35: 45–58.

    Google Scholar 

  • Olson, R. J., E. R. Zettler, S.W. Chisholm & J. A. Dusenberry, 1991. Advances in oceanography through flow cytometry. In Demers S. (ed.), Particle Analysis in Oceanography, NATO ASI Series, G27. Springer-Verlag, Berlin: 351–399.

    Google Scholar 

  • Orellana, M. V. & M. J. Perry, 1995. Optimization of an immunofluorescent assay of the internal enzyme ribulose-1,5-bisphosphate carboxylase (RUBISCO) in single phytoplankton cells. J. Phycol. 31: 785–794.

    Google Scholar 

  • Ouverney, C. C. & J. A. Fuhrman, 1997. Increase in fluorescence intensity of 16S rRNA in situ hybridization in natural samples treated with chloramphenicol. Appl. envir. Microbiol. 63: 2735–2740.

    Google Scholar 

  • Pace, N. R., 1997. Molecular view of microbial diversity and the biosphere. Science 276: 734–740.

    Google Scholar 

  • Palenik, B., 1994. Cyanobacterial community structure as seen from RNA polymerase gene sequence analysis. J. Bact. 60: 3212–3219.

    Google Scholar 

  • Palenik, B. & J. A. Koke, 1995. Characterization of a nitrogenregulated protein identified by cell surface biotinylation of a marine phytoplankton. Appl. envir. Microbiol. 61: 3311–3315.

    Google Scholar 

  • Palenik, B. & H. Swift, 1996. Cyanobacterial evolution and Prochlorophyte diversity as seen in DNA-dependent RNA polymerase gene sequences. J. Phycol. 32: 638–646.

    Google Scholar 

  • Partensky, F., J. Blanchot, F. Lantoine, J. Neveux & D. Marie, 1996. Vertical structure of picophytoplankton at different trophic sites of the tropical northeastern Atlantic Ocean. Deep Sea Res. 43: 1191–1213.

    Google Scholar 

  • Partensky, F., N. Hoepffner, W. K. W. Li, O. Ulloa & D. Vaulot, 1993. Photoacclimation of Prochlorococcus sp. (Prochlorophyta) strains isolated from the North Atlantic and the Mediterranean Sea. Pl. Physiol. 101: 285–296.

    Google Scholar 

  • Paul, J. H., L. Cazares & J. Thurmond, 1990. Amplification of the rbcL gene from dissolved particulate DNA from aquatic environments. Appl. envir. Microbiol. 56: 1963–1966.

    Google Scholar 

  • Peeters, J. C.H., G. B. J. Dubelaar, J. Ringelberg & J.W.M. Visser, 1989. Optical plankton analyser: A flow cytometer for plankton analysis, I: design considerations. Cytometry 10: 522–528.

    Google Scholar 

  • Pernthaler, J., T. Posch, K. Simek, J. Vrba, R. Amann & R. Psenner, 1997. Contrasting bacterial strategies to coexist with a flagellate predator in an experimental microbial assemblage. Appl. envir. Microbiol. 63: 596–601.

    Google Scholar 

  • Phinney, D. A. & T. L. Cucci, 1989. Flow cytometry and phytoplankton. Cytometry 10: 511–521.

    Google Scholar 

  • Pichard, S. L. & J. H. Paul, 1991. Detection of gene expression in genetically engineered microorganisms and natural phytoplankton populations in the marine environment by mRNA analysis. Appl. envir. Microbiol. 57: 1721–1727.

    Google Scholar 

  • Pichard, S. L. & J. H. Paul, 1993. Gene expression per gene dose, a specific measure of gene expression in aquatic microorganisms. Appl. envir. Microbiol. 59: 451–457.

    Google Scholar 

  • Pichard, S. L., L. Campbell, K. Carder, J. B. Kang, J. Patch, F. R. Tabita & J. H. Paul, 1997. Analysis of ribulose bisphosphate carboxylase gene expression in natural phytoplankton communities by group-specific gene probing. Mar. Ecol. Prog. Ser. 149: 239–253.

    Google Scholar 

  • Pizarro, J., E. Jedlicki, O. Orellana, J. Romero & R. T. Espejo, 1996. Bacterial populations in samples of bioleached copper ore as revealed by analysis of DNA obtained before and after cultivation. Appl. envir. Microbiol. 62: 1323–1328.

    Google Scholar 

  • Pomeroy, L. R., 1974. The ocean's food web, a changing paradigm. BioScience 24: 499–504.

    Google Scholar 

  • Porro, D., E. Martegani, B. M. Ranzi & L. Alberghina, 1997. Identification of different daughter and parent subpopulations in an asynchronously growing Saccharomyces cerevisiae population. Res. Microbiol. 148: 205–215.

    Google Scholar 

  • Porter, J., R. Pickup & C. Edwards, 1995a. Flow cytometric detection of specific genes in genetically modified bacteria using in situ polymerase chain reaction. FEMS Microbiol. Lett. 134: 51–56.

    Google Scholar 

  • Porter, J., D. Deere, R. Pickup & C. Edwards, 1996. Fluorescent probes and flow cytometry: new insights into environmental bacteriology. Cytometry 23: 91–96.

    Google Scholar 

  • Porter, J., J. Diaper, C. Edwards & R. Pickup, 1995b. Direct measurements of natural planktonic bacterial community viability by flow cytometry. Appl. envir. Microbiol. 61: 2783–2786.

    Google Scholar 

  • Porter, K. G. & Y. S. Feig, 1980. The use of DAPI for identifying and counting aquatic microflora. Limnol. Oceanogr. 25: 943–948.

    Google Scholar 

  • Potter, D., T. C. Lajeunesse, G. W. Saunders & R. A. Anderson, 1997. Convergent evolution masks extensive biodiversity among marine coccoid picoplankton. Biodiv. Conserv. 6: 99–107.

    Google Scholar 

  • Ramsing, N. B., H. Fossing, T. G. Ferdelman, F. Andersen & B. Thamdrup, 1996. Distribution of bacterial populations in a stratified fjord (Mariager Fjord, Denmark) quantified by in situ hybridization and related to chemical gradients in the water column. Appl. envir. Microbiol. 62: 1391–1404.

    Google Scholar 

  • Reckermann, M. & M. J. W. Veldhuis, 1997. Trophic interactions between picophytoplankton and micro-and nanozooplankton in the western Arabian Sea during the NE monsoon 1993. Aquat. microb. Ecol. 12: 263–273.

    Google Scholar 

  • Rehnstam, A.-S., S. Backman, D. C. Smith, F. Azam & A. Hagstrom, 1993. Blooms of sequence-specific culturable bacteria in the sea. FEMS Microbiol. Ecol. 102: 161–166.

    Google Scholar 

  • Rice, J., C. D. O'Connor, M. A. Sleigh, P. H. Burkhill, I. G. Giles & M. V. Zubkov, 1997a. Fluorescent oligonucleotide rDNA probes that specifically bind to a common nanoflagellate, Paraphysomonas vestita. Microbiology 143: 1717–1727.

    Google Scholar 

  • Rice, J., M. A. Sleigh, P. H. Burkhill, G. A. Tarran, C. D. O'Connor & M. V. Zubkov, 1997b. Flow cytometric analysis of characteristics of hybridization of species-specific fluorescent oligonucleotide probes to rRNA of marine nanoflagellates. Appl. envir. Microbiol. 63: 938–944.

    Google Scholar 

  • Roller, C., M. Wagner, R. Amann, W. Ludwig & K.-H. Schleifer, 1994. In situ probing of gram-positive bacteria with high DNA G+C content using 23S rRNA-targeted oligonucleotides. Microbiology 140: 2849–2858.

    Google Scholar 

  • Rosenblatt, J. I., J. A. Hokanson, S. R. McLaughlin & J. F. Leary, 1997. Theoretical basis for sampling statistics useful for detecting and isolating rare cells using flow cytometry and cell sorting. Cytometry 27: 233–238.

    Google Scholar 

  • Roth, B. L., M. Poot, S. T. Yue & P. J. Millard, 1997. Bacterial viability and antibiotic susceptibility testing with SYTOX Green nucleic acid stain. Appl. envir. Microbiol. 63: 2421–2431.

    Google Scholar 

  • Rothemund, C., R. Amann, S. Klugbauer, W. Manz, C. Bieber, K.-H. Schleifer & P. Wilderer, 1996. Microflora of 2,4-dichlorophenoxyacetc acid degrading biofilms on gas permeable membranes. System. appl. Microbiol. 19: 608–615.

    Google Scholar 

  • Sandgren, C. D., 1988. Growth and Reproductive Strategies of Freshwater Phytoplankton. Cambridge University Press, Cambridge, 442 pp.

    Google Scholar 

  • Santo Domingo, J. W., M. G. Kaufman, M. J. Klug & J. M. Tiedje, 1998. Characterization of the cricket hindgut microbiota with fluorescently labeled rRNA-targeted oligonucleotide probes. Appl. envir. Microbiol. 64: 752–755.

    Google Scholar 

  • Scanlan, D. J., W. R. Hess, F. Partensky, J. Newman & D. Vaulot, 1996. High degree of genetic variation in Prochlorococcus (Prochlorophyta) revealed by RFLP analysis. Eur. J. Phycol. 21: 1–9.

    Google Scholar 

  • Scanlan, D. J., N. J. Silman, K. M. Donald, W. H. Wilson, N. G. Carr, I. Joint & N. H. Mann, 1997. An immunological approach to detect phosphate stress in populations and single cells of photosynthetic picoplankton. Appl. envir. Microbiol. 63: 2411–2420.

    Google Scholar 

  • Schleifer, K.-H., M. Ehrmann, C. Beimfohr, E. Brockmann, W. Ludwig & R. Amann, 1995. Application of molecular methods for the classification and identification of lactic acid bacteria. Int. Dairy J. 5: 1081–1094.

    Google Scholar 

  • Schmidt, T. M., E. F. DeLong & N. R. Pace, 1991. Analysis of a marine picoplankton community by 16S rRNA gene cloning and sequencing. J. Bact. 173: 4371–4378.

    Google Scholar 

  • Schonhuber, W., B. Fuchs, S. Juretschko & R. Amann, 1997. Improved sensitivity of whole-cell hybridization by the combination of horseradish peroxidase-labeled oligonucleotides and tyramide signal amplification. Appl. envir. Microbiol. 63: 3268–3273.

    Google Scholar 

  • Schramm, A., L. H. Larsen, N. P. Revsbech, N. B. Ramsing, R. Amann & K.-H. Schleifer, 1996. Structure and function of a nitrifying biofilm as determined by in situ hybridization and the use of microelectrodes. Appl. envir. Microbiol. 62: 4641–4647.

    Google Scholar 

  • Shapiro, H., 1995. Practical Flow Cytometry. 3rd edn. Wiley-Liss, New York, 542 pp.

    Google Scholar 

  • Shapiro, L. P., L. Campbell & E. M. Haugen, 1989. Immunochemical recognition of phytoplankton species. Mar. Ecol. Prog. Ser. 57: 219–224.

    Google Scholar 

  • Simek, K., J. Vrba, J. Pernthaller, T. Posch, P. Hartman, J. Nedoma & R. Psenner, 1997. Morphological and compositional shifts in an experimental bacterial community influenced by protists with contrasting feeding modes. Appl. envir. Microbiol. 63: 587–595.

    Google Scholar 

  • Simon, N., H. Nolla & L. Campbell, 1996. Identification of phytoplankton by in situ hybridization combined with flow cytometery. EOS 76(3): OS112.

    Google Scholar 

  • Simon, N., J. Brenner, B. Edvardsen & L. K. Medlin, 1997. The identification of Chrysochromulina and Prymnesium species (Haptophyta, Prymnesiophyceae) using fluorescent or chemiluminescent oligonucleotide probes: a means for improving studies on toxic algae. Eur. J. Phycol. 32: 393–401.

    Google Scholar 

  • Simon, N., R. G. Barlow, D. Marie, F. Partensky & D. Vaulot, 1994. Characterization of oceanic photosynthetic picoeukaryotes by flow cytometry. J. Phycol. 30: 922–935.

    Google Scholar 

  • Simon, N., N. LeBot, D. Marie, F. Partensky & D. Vaulot, 1995. Fluorescent in situ hybridization with rRNA-targeted oligonucleotide probes to identify small phytoplankton by flow cytometry. Appl. envir. Microbiol. 61: 2506–2513.

    Google Scholar 

  • Sinigalliano, C. D., D. N. Kuhn & R. D. Jones, 1995. Amplification of the amoA gene from diverse species of ammoniumoxidizing bacteria and from an indigenous bacterial population from seawater. Appl. envir. Microbiol. 61: 2702–2706.

    Google Scholar 

  • Snaidr, J., R. Amann, I. Huber, W. Ludwig & K.-H. Schleifer, 1997. Phylogenetic analysis and in situ identification of bacteria in activated sludge. Appl. envir. Microbiol. 63: 2884–2896.

    Google Scholar 

  • Sorensen, B. B. & M. Jakobsen, 1997. The combined effects of temperature, pH and NaCl on growth of Debaryomyces hansenii analyzed by flow cytometry and predictive microbiology. Int. J. Food Microbiol. 34: 209–220.

    Google Scholar 

  • Steen, H. B., 1991. Flow cytometry instrumentation. In Demers S. (ed.), Particle Analysis in Oceanography, NATO ASI Series, G27. Springer-Verlag, Berlin: 3–29.

    Google Scholar 

  • Steen, H. B., 1992. Noise, sensitivity, and resolution of flow cytometers. Cytometry 18: 822–830.

    Google Scholar 

  • Suzuki, M. T., M. S. Rappe, Z. W. Haimberger, H. Winfield, N. Adair, J. Strobel & S. J. Giovannoni, 1997. Bacterial diversity among small-subunit rRNA gene clones and cellular isolates from the same seawater sample. Appl. envir. Microbiol. 63: 983–989.

    Google Scholar 

  • Tani, K., K. Kurokawa & M. Nasu, 1998. Development of a direct in situ PCR method for detection of specific bacteria in natural environments. Appl. envir. Microbiol. 64: 1536–1540.

    Google Scholar 

  • Tate, R. L., III, 1986. Importance of autecology in microbial ecology. In R. L. Tate, III (ed.), Microbial Autecology. John Wiley & Sons, New York: 1–26.

    Google Scholar 

  • Teske, A., C. Wawer, G. Muyzer & N. B. Ramsing, 1996. Distribution of sulfate-reducing bacteria in a stratified fjord (Mariager Fjord, Denmark) as evaluated by most-probable-number counts and denaturing gradient gel electrophoresis of PCR-amplified ribosomal DNA fragments. Appl. envir. Microbiol. 62: 1405–1415.

    Google Scholar 

  • Thomas, J.-C., M. Desrosiers, Y. St-Pierre, P. Lirette, J.-G. Bisaillon, R. Beaudet & R. Villemur, 1997. Quantitative flow cytometric detection of specific microorganisms in soil samples using rRNA targeted fluorescent probes and ethidium bromide. Cytometry 27: 224–232.

    Google Scholar 

  • Timm, E. A., Jr. & C. C. Stewart, 1992. Fluorescent in situ hybridization en suspension (FISHES) using digoxigenin-labeled probes and flow cytometry. BioTechniques 12: 362–367.

    Google Scholar 

  • Toledo, G. & B. Palenik, 1997. Synechococcus diversity in the California Current as seen by RNA polymerase (rpoC1) gene sequences of isolated strains. Appl. envir. Microbiol. 63: 4298–4303.

    Google Scholar 

  • Tolker-Nielsen, T., K. Holmstrom & S. Molin, 1997. Visualization of specific gene expression in individual Salmonella typhimurium cells by in situ PCR. Appl. envir. Microbiol. 63: 4196–4203.

    Google Scholar 

  • Tolker-Nielsen, T., K. Holmstrom, L. Boe & S. Molin, 1998. Nongenetic population heterogeneity studied by in situ polymerase chain reaction. Mol. Microbiol. 27: 1099–1105.

    Google Scholar 

  • Tombolini, R., A. Unge, M. E. Davey, F. J. de Bruijn & J. K. Jansson, 1997. Flow cytometric and microscopic analysis of GFP-tagged Pseudomonas fluorescens bacteria. FEMS Microbiol. Ecol. 22: 17–28.

    Google Scholar 

  • Trebesius, K., R. Amann, W. Ludwig, K. Muhlegger & K.-H. Schleifer, 1994. Identification of whole fixed bacterial cells with nonradioactive 23S rRNA-targeted polynucleotide probes. Appl. envir. Microbiol. 60: 3228–3235.

    Google Scholar 

  • Troussellier, M., C. Courties & A. Vaquer, 1993. Recent applications of flow cytometry in aquatic microbial ecology. Biol. Cell. 78: 111–121.

    Google Scholar 

  • Tyndall, R. L., R. E. Hand, Jr., R. C. Mann, C. Evans & R. Jernigan, 1985. Application of flow cytometry to detection and characterization of Legionella spp. Appl. envir. Microbiol. 49: 852–857.

    Google Scholar 

  • Urbach, E., D. J. Scanlan, D. L. Distel, J. B. Waterbury & S. W. Chisholm, 1998. Rapid diversification of marine picophytoplankton with dissimilar light-harvesting structures inferred from sequences of Prochlorococcus and Synechococcus (Cyanobacteria). J. mol. Evol. 46: 188–201.

    Google Scholar 

  • Vaulot, D. & F. Partensky, 1992. Cell cycle distributions of prochlorophytes in the north western Mediterranean Sea. Deep Sea Res. 39: 727–742.

    Google Scholar 

  • Vaulot, D., D. Marie, R. J. Olson & S. W. Chisholm, 1995. Growth of Prochlorococcus, a photosynthetic prokaryote, in the equatorial Pacific Ocean. Science 268: 1480–1482.

    Google Scholar 

  • Veldhuis M. J. W., T. L. Cucci & M. E. Sieracki, 1997. Cellular DNA content of marine phytoplankton using two new fluorochromes: taxonomic and ecological implications. J. Phycol. 33: 527–541.

    Google Scholar 

  • Vesey, G., P. Hutton, A. Champion, N. Ashbolt, K. L. Williams, A. Warton & D. Veal, 1994. Application of flow cytometric methods for the routine detection of Cryptosporidium and Giardia in water. Cytometry 16: 1–6.

    Google Scholar 

  • Volsch, A., W. F. Nader, H. K. Geiss, G. Nebe & C. Birr, 1990. Detection and analysis of two serotypes of ammonia-oxidizing bacteria in sewage plants by flow cytometry. Appl. envir. Microbiol. 56: 2430–2435.

    Google Scholar 

  • Voytek, M. A. & B. B. Ward, 1995. Detection of ammoniumoxidizing bacteria of the beta-subclass of the class Proteobacteria in aquatic samples with the PCR. Appl. envir. Microbiol. 61: 1444–1450.

    Google Scholar 

  • Vrieling, E. G. & D. M. Anderson, 1996. Immunofluorescence in phytoplankton research: applications and potential. J. Phycol. 32: 1–16.

    Google Scholar 

  • Vrieling, E. G., W. H. van den Poll, G. Vriezekolk & W. W. C. Gieskes, 1997. Immuno-flow cytometric detection of the ichthyotoxic dinoflagellates Gyrodinium aureolum and Gymnodinium nagasakiense: independence of physiological state. Neth. J. Sea Res. 37: 91–100.

    Google Scholar 

  • Wagner, M., R. Amann, H. Lemmer & K.-H. Schleifer, 1993. Probing activated sludge with oligonucleotides specific for proteobacteria: inadequacy of culture-dependent methods for describing microbial community structure. Appl. envir. Microbiol. 59: 1520–1525.

    Google Scholar 

  • Wagner, M., G. Rath, R. Amann, H.-P. Koops & K.-H. Schleifer, 1995. In situ identification of ammonia-oxidizing bacteria. System. appl. Microbiol. 18: 251–264.

    Google Scholar 

  • Wagner, M., G. Rath, H.-P. Koops, J. Flood & R. Amann, 1996. In situ analysis of nitrifying bacteria in sewage treatment plants. Wat. Sci. Tech. 34: 237–244.

    Google Scholar 

  • Walberg, M., P. Gaustad & H. B. Steen, 1996. Rapid flow cytometric assessment of mecillinam and ampicillin bacterial susceptibility. J. antimicrob. Chemo. 37: 1063–1075.

    Google Scholar 

  • Walberg, M., P. Gaustad & H. B. Steen, 1997. Rapid assessment of ceftazidime, ciprofloxacin, and gentamicin susceptibility in exponentially-growing E. coli cells by means of flow cytometry. Cytometry 27: 169–178.

    Google Scholar 

  • Wallner, G., R. Amann & W. Beisker, 1993. Optimizing fluorescent in situ hybridization with rRNA-targeted oligonucleotide probes for flow cytometric identification of microorganisms. Cytometry 14: 136–143.

    Google Scholar 

  • Wallner, G., R. Erhart & R. Amann, 1995. Flow cytometric analysis of activated sludge with rRNA-targeted probes. Appl. envir. Microbiol. 61: 1859–1866.

    Google Scholar 

  • Wallner, G., I. Steinmetz, D. Bitter-Suermann & R. Amann, 1996. Combination of rRNA-targeted hybridization probes and immuno-probes for the identification of bacteria by flow cytometry. System. appl. Microbiol. 19: 569–576.

    Google Scholar 

  • Wallner, G., B. Fuchs, S. Spring, W. Beisker & R. Amann, 1997. Flow sorting of microorganisms for molecular analysis. Appl. envir. Microbiol. 63: 4223–4231.

    Google Scholar 

  • Wang, G. C.-Y. & Y. Wang, 1996. The frequency of chimeric molecules as a consequence of PCR co-amplification of 16S rRNA genes from different bacterial species. Microbiology 142: 1107–1114.

    Google Scholar 

  • Ward, B. B., 1984. Combined autoradiography and immunofluorescence for estimation of single cell activity by ammoniumoxidizing bacteria. Limnol. Oceanogr. 29: 402–410.

    Google Scholar 

  • Ward, B. B., M. A. Voytek & K.-P. Witzel, 1997. Phylogenetic diversity of natural populations of ammonia oxidizers investigated by specific PCR amplification. Microb. Ecol. 33: 87–96.

    Google Scholar 

  • Weiss, P., B. Schweitzer, R. Amann & M. Simon, 1996. Identification in situ and dynamics of bacteria on limnetic organic aggregates (lake snow). Appl. envir. Microbiol. 62: 1998–2005.

    Google Scholar 

  • Weisse, T. & B. Kirchhoff, 1997. Feeding of the heterotrophic freshwater dinoflagellate Peridiniopsis berolinense on cryptophytes: analysis by flow cytometry and electronic particle counting. Aquat. microb. Ecol. 12: 153–164.

    Google Scholar 

  • Wood, A. M., P. K. Horan, K. Muirhead, D. A. Phinney, C. M. Yentsch & J. B. Waterbury, 1985. Discrimination between types of pigments in marine Synechococcus spp. by scanning spectroscopy, epifluorescence microscopy and flow cytometry. Limnol. Oceanogr. 30: 1303–1315.

    Google Scholar 

  • Yamaguchi, N., S. Inaoka, K. Tani, T. Kenzaka & M. Nasu, 1996. Detection of specific bacterial cells with 2-hydroxy-3-napthoic acid-20-phenylanilide phosphate and Fast Red TR in situ hybridization. Appl. envir. Microbiol. 62: 275–278.

    Google Scholar 

  • Yentsch, C. M. & P. K. Horan, 1989. Cytometry in the aquatic sciences. Cytometry 10: 497–499.

    Google Scholar 

  • Zarda, B., R. Amann, G. Wallner & K.-H. Schleifer, 1991. Identification of single bacterial cells using digoxigenin-labelled, rRNA-targeted oligonucleotides. J. gen. Microbiol. 137: 2823–2830.

    Google Scholar 

  • Zehr, J. P. & D. G. Capone, 1996. Problems and promises of assaying the genetic potential for nitrogen fixation in the marine environment. Microb. Ecol. 32: 263–281.

    Google Scholar 

  • Zehr, J. P., M. Mellon, S. Braun, W. Litaker, T. Steppe & H. W. Paerl, 1995. Diversity of heterotrophic nitrogen fixation genes in a marine cyanobacterial mat. Appl. envir. Microbiol. 61: 2527–2532.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Collier, J.L., Campbell, L. Flow cytometry in molecular aquatic ecology. Hydrobiologia 401, 34–54 (1999). https://doi.org/10.1023/A:1003769806881

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003769806881

Navigation