Skip to main content
Log in

Effectiveness of different classes of molecular marker for classifying and revealing variation in rice (Oryza sativa) germplasm

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

We have examined the effectiveness of similar numbers of markers from four molecular marker systems (AFLP, isozymes, ISSR and RAPD) for revealing genetic diversity and discriminating between infraspecific groups of Oryza sativa germplasm. Each marker system classifies the germplasm into three major groups (most effectively with isozymes and AFLPs), but with differences (primarily with ISSR) between the precise classifications generated. However, at the highest levels of genetic similarity there was only partial agreement as to relationships between individual accessions when different markers were used. When variance was partitioned among and within the three subspecific groups, although the differences were not significant, greater variation was found among than within groups using AFLP and isozymes, with the reverse for RAPD and ISSR. Measurement of polymorphism using average heterozygosity and effective number of alleles gave similar results for each marker system. These results are discussed in relation to various genetic resources conservation activities, and the advisability of extrapolating to other sets of germplasm particularly of other crop species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bohn, M., H.F. Utz &; A.E. Melchinger, 1999. Genetic similarities among winter wheat cultivars determined on the basis of RFLPs, AFLPs and SSRs and their use for predicting progeny variance. Crop Sci 39: 228–237.

    Article  CAS  Google Scholar 

  • Bowcock, A.M., A. Ruiz-Linares, J. Tomfohrde, E. Minch, J.R. Kidd &; L.L. Cavalli-Sforza, 1994. High resolution of human evolutionary trees with polymorphic microsatellites. Nature 368: 455–457.

    Article  PubMed  CAS  Google Scholar 

  • Chang, T.T., 1976. The origin, evolution, cultivation, dissemination, and diversification of Asian and African rices. Euphytica 25: 425–441.

    Article  Google Scholar 

  • Ellis, R.P., J.W. McNicol, E. Baird, A. Booth, P. Lawrence, B. Thomas &; W. Powell, 1997. The use of AFLPs to examine genetic relatedness in barley. Mol Breed 3: 359–369.

    Article  CAS  Google Scholar 

  • Excoffier, L., P. Smouse &; J. Quattro, 1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data. Genetics 131: 479–491.

    PubMed  CAS  Google Scholar 

  • Garland, S.H., L. Lewin, M. Abedinia, R. Henry &; A. Blakeney, 1999. The use of microsatellite polymorphisms for the identification of Australian breeding lines of rice (Oryza sativa L.). Euphytica 108: 53–63.

    Article  CAS  Google Scholar 

  • Glaszmann, J.C., 1987. Isozymes and classification of ancient rice varieties. Theor Appl Genet 74: 21–30.

    Article  CAS  Google Scholar 

  • Glaszmann, J.C., 1988. Geographic patterns of variation among ancient native cultivars (Oryza sativa L.) based on 15 isozyme loci. Genome 30: 782–792.

    Google Scholar 

  • Jackson, M.T., J.L. Pham, H.J. Newbury, B.V. Ford-Lloyd &; P.S. Virk, 1998. A core collection of rice: needs, opportunities, and constraints. Symposium on Core Collections, Annual Meeting of the Crop Science Society of America, October 1998.

  • Kato, S., H. Kosaka &; S. Hara, 1928. On the affinity of rice varieties as shown by the fertility of rice plants. Centr Agric Inst. Kyushu Imp Univ 2: 241–276.

    Google Scholar 

  • Khush, G.S., 1995. Breaking the yield frontier of rice. Geojournal 35(3): 329–332.

    Article  Google Scholar 

  • Lu, J., M.R. Knox, M.J. Ambrose, J.K.M. Brown &; T.H.N. Ellis, 1996. Comparative analysis of genetic diversity in pea assessed by RFLP and PCR based methods. Theor Appl Genet 93(7): 1103–1111.

    Article  CAS  Google Scholar 

  • Mantel, N.A., 1967. The detection of disease clustering and a generalized regression approach. Cancer Res 27: 209–220.

    PubMed  CAS  Google Scholar 

  • Martin, C., A. Juliano, H.J. Newbury, B.-R. Lu, M.T. Jackson &; B.V. Ford-Lloyd, 1997. The use of RAPD markers to facilitate the identification of Oryza species within a germplasm collection. Genet Resour Crop Evol 44: 175–183.

    Article  Google Scholar 

  • Matsuo, T., 1952. Genecological studies on cultivated rice. Bull Nat Inst Agric Sci Jpn D 3: 1–111.

    Google Scholar 

  • Milbourne, D., R. Meyer, J.E. Bradshaw, E. Baird, N. Bonar, J. Provan, W. Powell &; R. Waugh, 1997. Comparison of PCR-based marker systems for the analysis of genetic relationships in cultivated potato. Mol Breed 3: 127–136.

    Article  CAS  Google Scholar 

  • Morinaga, T., 1954. Classification of rice varieties on the basis of affinity. In: Int. Rice Commission, Working Party on Rice Breeding, Rep. 5th Meeting, pp. 1-14.

  • Murray, M. &; W. Thompson, 1980. Rapid isolation of high molecular weight plant DNA. Nucl Acid Res 8: 4321.

    CAS  Google Scholar 

  • Nandi, S., P.K. Subudhi, D. Senadhira, N.L. Manigbas, S. Sen-Mandi &; N. Huang, 1997. Mapping QTLs for submergence tolerance in rice by AFLP analysis and selective genotyping. Mol Gen Genet 255: 1–8.

    Article  PubMed  CAS  Google Scholar 

  • Nei, M., 1987. Molecular evolutionary genetics. Columbia University Press, New York.

    Google Scholar 

  • Newbury, H.J. &; B.V. Ford-Lloyd, 1997. Estimating genetic diversity. In: N. Maxted, B.V. Ford-Lloyd &; J.G. Hawkes (Eds.), Plant Genetic Conservation: The In-Situ Approach. Chapman and Hall.

  • Oka, H.I., 1958. Intervarietal variation and classification of cultivated rice. Indian J Genet Plant Breed 18: 79–89.

    Google Scholar 

  • Parsons, B.J., H.J. Newbury, M.T. Jackson &; B.V. Ford-Lloyd, 1997. Contrasting genetic diversity relationships are revealed in rice (Oryza sativa L.) using different marker types. Mol Breed 3: 115–125.

    Article  CAS  Google Scholar 

  • Pejic, I., P. Ajmone Marsan, M. Morgante, V. Kozumplick, P. Castiglioni, G. Taramino &; M. Motto, 1998. Comparative analysis of genetic similarity among maize inbred lines detected by RFLPs, RAPDs, SSRs and AFLPs. Theor Appl Genet 97: 1248–1255.

    Article  CAS  Google Scholar 

  • Peng, S., G.S. Khush &; K.G. Cassman, 1994. Evolution of the new plant ideotype for increased yield potential. In: K.G. Cassman (Ed.), Breaking the Yield Barrier: Proceedings of a Workshop on Rice Yield Potential in Favorable Environments, IRRI, 1993, Los Baños, Philippines.

    Google Scholar 

  • Powell,W., M. Morgante, C. Andre, M. Hanafey, J. Vogel, S. Tingey &; A. Rafalski, 1996. The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol Breed 2: 225–238.

    Article  CAS  Google Scholar 

  • Rohlf, J.F., 1992. NTSYS-pc: numerical taxonomy and multivariate analysis system. Exeter Software, New York.

    Google Scholar 

  • Roupe van der Voort, J.N.A.M., P. van Zandvoort, H.J. van Eck, R.T. Folkertsma, R.C.B. Hutten, J. Draaistra, F.J. Gommers, E. Jacobsen, J. Helder &; J. Bakker, 1997. Use of allele specificity of comigrating AFLP markers to align genetic maps from different potato genotypes. Mol Gen Genet 255: 438–447.

    Article  Google Scholar 

  • Russell, J.R., J.D. Fuller, M. Macaulay, B.G. Hatz, A. Jahoor, W. Powell &; R.Waugh, 1997. Direct comparison of levels of genetic variation among barley accessions detected by RFLPs, AFLPs, SSRs and RAPDs. Theor Appl Genet 95: 714–722.

    Article  CAS  Google Scholar 

  • Steel, R.G.D. &; J.H. Torrie, 1981. Principles and Procedures of Statistics-A Biometrical Approach, 2nd ed. McGraw-Hill, Singapore.

    Google Scholar 

  • Terao, H. &; U. Mizushima, 1942. Some considerations on the classification of Oryza sativa L. into two subspecies, so-called Japonica and Indica. Jpn J Bot 10: 213–258.

    Google Scholar 

  • Virk, P., B.V. Ford-Lloyd, M.T. Jackson &; H.J. Newbury, 1995. The use of RAPD for the study of diversity within plant germplasm collections. Heredity 74: 170–179.

    PubMed  CAS  Google Scholar 

  • Virk, P., B.V. Ford-Lloyd, M.T. Jackson &; H.J. Newbury, 1996. Predicting quantitative variation within rice germplasm using molecular markers. Heredity 76: 296–304.

    Google Scholar 

  • Vos, P., R. Hogers, M. Bleeker, M. Reijans, T. van de Lee, M. Hornes, A. Frijters, J. Pot, J. Peleman, M. Kuiper &; M. Zabeau, 1995. AFLP: a new technique for DNA fingerprinting. Nucl Acids Res 23: 4407–4414.

    PubMed  CAS  Google Scholar 

  • Wang, Z.Y. &; S.D. Tanksley, 1989. Restriction fragment length polymorphism in Oryza sativa L. Genome 32: 1113–1118.

    CAS  Google Scholar 

  • Wu, K. &; S.D. Tanksley, 1993. Abundance, polymorphism and genetic mapping of microsatellites in rice. Mol Gen Genet 241: 225–235.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, Q., M.A. Saghai Maroof, T.Y. Lu &; B.Z. Shen, 1992. Genetic diversity and differentiation of indica and japonica rice detected by RFLP analysis. Theor Appl Genet 83: 495–499.

    Google Scholar 

  • Zheng, K., H. Qian, B. Shen, J. Zhuang, H. Lin, &; J. Lu, 1994. RFLP-based phylogenetic analysis of wide compatibility varieties in Oryza sativa L. Theor Appl Genet 88: 65–69.

    Article  CAS  Google Scholar 

  • Zhu, J., M.D. Gale, S. Quarrie, M.T. Jackson &; G.J. Bryan, 1998. AFLP markers for the study of rice biodiversity. Theor Appl Genet 96: 602–611.

    Article  CAS  Google Scholar 

  • Zietkiewics, E., A. Rafalski &; D. Labuda, 1994. Genome fingerprinting by simple sequence repeats (SSR)-anchored PCR amplification. Genomics 20: 176–183.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Virk, P., Zhu, J., Newbury, H. et al. Effectiveness of different classes of molecular marker for classifying and revealing variation in rice (Oryza sativa) germplasm. Euphytica 112, 275–284 (2000). https://doi.org/10.1023/A:1003952720758

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003952720758

Navigation