Skip to main content
Log in

Organic matter diagenesis at the oxic/anoxic interface in coastal marine sediments, with emphasis on the role of burrowing animals

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The present paper reviews the current knowledge on diagenetic carbon transformations at the oxic/anoxic interface in coastal marine sediments. Oxygen microelectrodes have revealed that most coastal sediments are covered only by a thin oxic surface layer. The penetration depth of oxygen into sediments is controlled by the balance between downward transport and consumption processes. Consumption of oxygen is directly or indirectly caused by respiration of benthic organisms. Aerobic organisms have the enzymatic capacity for complete oxidation of organic carbon. Anaerobic decay occurs stepwise, involving several types of bacteria. Large organic molecules are first fermented into small moieties. These are then oxidized completely by anaerobic respirers using a sequence of electron acceptors: Mn4+, NO3 -, Fe3+, SO4 2- and CO2. The quantitative role of each electron acceptor depends on the sediment type and water depth. Since most of the sediment oxygen uptake is due to reoxidation of reduced metabolites, aerobic respiration is of limited importance. It has been suggested that sediments contain three major organic fractions: (1) fresh material that is oxidized regardless of oxygen conditions; (2) oxygen sensitive material that is only degraded in the presence of oxygen; and (3) totally refractory organic matter. Processes occurring at the oxic/anoxic boundaries are controlled by a number of factors. The most important are: (1) temperature, (2) organic supply, (3) light, (4) water currents, and (5) bioturbation. The role of bioturbation is important because the infauna creates a three-dimensional mosaic of oxic/anoxic interfaces in sediments. The volume of oxic burrow walls may be several times the volume of oxic surface sediment. The infauna increases the capacity, but not the overall organic matter decay in sediments, thus decreasing the pool of reactive organic matter. The increase in decay capacity is partly caused by injection of oxygen into the sediment, and thereby enhancing the decay of old, oxygen sensitive organic matter several fold. Finally, some future research directions to improve our understanding of diagenetic processes at the oxic/anoxic interface are suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aller, J. Y. & R. C. Aller, 1986. Evidence for localized enhancement of biological activity associated with tube and burrow structures in deep-sea at the HEBBLE site western North Atlantic. Deep Sea Res. 33: 755–790.

    Google Scholar 

  • Aller, R. C., 1982. The effects of macrobenthos on chemical properties of marine sediment and overlying water. In McCall, P. L. & P. J. S. Tevesz (eds), Animal-Sediment Relations. Plenum, New York: 53–102.

    Google Scholar 

  • Aller, R. C., 1983. The importance of the diffusive permeability of animal burrow linings in determining marine sediment chemistry. J. mar. Res. 41: 299–322.

    Google Scholar 

  • Aller, R. C., 1990. Bioturbation and manganese cycling in hemipelagic sediments. Phil. Trans. r. Soc., Lond. A 331: 51–68.

    Google Scholar 

  • Aller, R. C. & J. Y. Aller, 1998. The effect of biogenic irrigation intensity and solute exchange on diagenetic reaction rates inmarine sediments. J. mar. Res. 56: 905–936.

    Google Scholar 

  • Aller, R. C. & J. Y. Yingst, 1978. Biogeochemistry of tubed-wellings: a study of the sedentary polychaete Amphitrite ornata (Leidy). J. mar. Res. 36: 201–254.

    Google Scholar 

  • Andersen, F. Ø., 1996. Fate of organic carbon added as diatom cells to oxic and anoxic marine sediment microcosms. Mar. Ecol. Prog. Ser. 134: 225–233.

    Google Scholar 

  • Andersen, F. Ø. & E. Kristensen, 1988. The influence of macrofauna on estuarine benthic community metabolism-a microcosm study. Mar. Biol. 99: 591–603.

    Google Scholar 

  • Archer, D., S. Emerson & C. R. Smith, 1989. Direct measurement of the diffusive sublayer at the deep sea floor using oxygen microelectrodes. Nature 340: 623–626.

    Google Scholar 

  • Austin, B., 1988. Marine Microbiology. Cambridge Univ. Press, Cambridge. 222 pp.

    Google Scholar 

  • Banta, G. T., A. E. Giblin, J. E. Hobbie & J. Tucker, 1995. Benthic respiration and nitrogen release in Buzzards Bay, Massachusetts. J. mar. Res. 53,107–135

    Google Scholar 

  • Banta, G. T., M. Holmer, M. H. Jensen & E. Kristensen, 1999. The effects of two polychaete worms, Nereis diversicolor and Arenicola marina, on aerobic and anerobic decomposition in a sandy marine sediment. Aquat. Microb. Ecol. 19: 189–204.

    Google Scholar 

  • Benner, R., A. E. Maccubbin & R. E. Hodson, 1984. Preparation, characterization and microbial degradation of specifically radiolabelled [14C] lignocelluloses from marine and freshwater macrophytes. Apl. envir. Microbiol. 47: 381–389.

    Google Scholar 

  • Berner R. A., 1980. Early Diagenesis, a Theoretical Approach. Princeton University Press, New Jersey: 241 pp.

    Google Scholar 

  • Brandes, J. A. & A. H. Devol, 1995. Simultaneous nitrate and oxygen respiration in coastal sediments: evidence for discrete diagenesis. J. mar. Res. 53: 771–797.

    Google Scholar 

  • Cai, W.-J. & C. E. Reimers, 1995. Benthic oxygen flux, bottom water oxygen concentration and core top organic carbon content in the deep northeast Pacific Ocean. Deep Sea Res. I 42: 1681–1699.

    Google Scholar 

  • Calvert, S. E. & T. F. Pedersen, 1992. Organic carbon accumulation and preservation in marine sediments: how important is anoxia? In Whelan, J. K. & J. W. Farrington (eds), Organic Matter: Productivity, Accumulation and Preservation in Recent and Ancient Sediments. Columbia Univ. Press, New York: 231–263.

    Google Scholar 

  • Canfield, D. E., 1989. Sulfate reduction and oxic respiration in marine sediments: implications for organic carbon preservation in euxinic environments. Deep-Sea Res. 36: 121–138.

    Google Scholar 

  • Canfield, D. E., 1994. Factors influencing organic carbon preservation in marine sediments. Chem. Geol. 114: 315–329.

    Google Scholar 

  • Canfield, D. E., B. B. Jørgensen, H. Fossing, R. Glud, J. Gundersen, N. B. Ramsing, B. Thamdrup, J. W. Hansen, L. P. Nielsen & P. O. J. Hall, 1993a. Pathways of organic carbon oxidation in three continental margin sediments. Mar. Geol. 113: 27–40.

    Google Scholar 

  • Canfield, D. E., B. Thamdrup & J. W. Hansen, 1993b. The anaerobic degradation of organic matter in Danish coastal sediments: iron reduction, manganese reduction and sulfate reduction. Geochim. Cosmochim. Acta 57: 3867–3884.

    Google Scholar 

  • Chanton, J. P., C. S. Martens & M. B. Goldhaber, 1987. Biogeochemical cycling in an organic-rich coastal marine basin. 7. Sulfur mass balance, oxygen uptake and sulfide retention. Geochim. Cosmochim. Acta 51: 1187–1199.

    Google Scholar 

  • Christensen, B., A. Vedel & E. Kristensen, 1999. Carbon and nitrogen fluxes in sediment inhabited by suspension-feeding (Nereis diversicolor) and non suspension-feeding (Nereis virens) polychaetes. Mar. Ecol. Prog. Ser. (in press).

  • Colijn, F. & V. N. de Jonge, 1984. Primary production of microphytobenthos in the Ems-Dollard estuary. Mar. Ecol. Prog. Ser. 14: 185–196.

    Google Scholar 

  • Davey, J. T., 1994. The architecture of the burrow of Nereis diversicolor and its quantification in relation to sediment-water exchange. J. exp. mar. Biol. Ecol. 179: 115–129.

    Google Scholar 

  • Defretin, R., 1971. The tubes of polychaete annelids. In Florkin, M. & E. H. Stotz (eds), Comprehensive Biochemistry, Vol. 26.2. Elsevier, Amsterdam: 713–747.

    Google Scholar 

  • Van Duyl, F. C., A. J. Kop, A. Kok & A. J. J. Sandee, 1992. The impact of organic matter and macrozoobenthos on bacterial and oxygen variables in marine sediment boxcosms. Neth. J. Sea Res. 29: 343–355.

    Google Scholar 

  • Fenchel, T., 1996a. Worm burrows and oxic microniches in marine sediments. 1. Spatial and temporal scales. Mar. Biol. 127: 289–295.

    Google Scholar 

  • Fenchel, T., 1996b. Worm burrows and oxic microniches in marine sediments. 2. Distribution patterns of ciliated protozoa. Mar. Biol. 127: 297–301.

    Google Scholar 

  • Fenchel, T & T. H. Blackburn, 1979. Bacteria and Mineral Cycling, Academic Press, London: 225 pp.

    Google Scholar 

  • Fenchel, T., G. M. King & T. H. Blackburn, 1998. Bacterial Biogeochemistry: the Ecophysiology of Mineral Cycling. Academic Press, San Diego: 307 pp.

    Google Scholar 

  • Forster, S & G. Graf, 1995. Impact of irrigation on oxygen flux into the sediment: intermittent pumping by Callianassa subterranea and 'piston pumping' by Lanice conchilega. Mar. Biol. 123: 335–346.

    Google Scholar 

  • Fossing, H. & B. B. Jørgensen, 1989. Measurement of bacterial sulfate reduction in sediments: evaluation of a single-step chromium reduction. Biogeochemistry 8: 205–222.

    Google Scholar 

  • Froelich P. N., G. Klinkhammer, M. L. Bender, N. A. Luedtke, G. R. Heath, D. Cullen, P. Dauphin, D. Hammond & B. Hartman, 1979. Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis. Geochim. Cosmochim. Acta 43: 1075–1095.

    Google Scholar 

  • Glud, R. N., J. K. Gundersen, B. B. Jørgensen, N. P. Revsbech & H. D. Schulz, 1994. Diffusive and total oxygen uptake of deepsea sediments in the eastern South Atlantic Ocean: in situ and laboratory measurements. DeepSea Res. I 41: 1767–1788.

    Google Scholar 

  • Glud, R. N., N. B. Ramsing, J. K. Gundersen & I. Klimant, 1996. Planar optrodes: a new tool for fine scale measurements of twodimensional O2 distribution in benthic communities. Mar. Ecol. Prog. Ser. 140: 217–226.

    Google Scholar 

  • Gundersen, J. K. & B. B. Jørgensen, 1990. Microstructure of diffusive boundary layers and the oxygen uptake of the sea floor. Nature 345: 604–607.

    Google Scholar 

  • Gust, G. & J. T. Harrison, 1981. Biological pumps at the sediment-water interface: mechanistic evaluation of the alpheid shrimp Alpheus mackayi and its irrigation pattern. Mar. Biol. 64: 71–78.

    Google Scholar 

  • Hansen, L. S. & T. H. Blackburn, 1991. Aerobic and anaerobic mineralization of organic material in marine sediment microcosms. Mar. Ecol. Prog. Ser. 75: 283–291.

    Google Scholar 

  • Hansen, L. S. & T. H. Blackburn, 1992. Mineralization budgets in sediment microcosms: effect of the infauna and anoxic conditions. FEMS Microbiol. Ecol. 102: 33–43.

    Google Scholar 

  • Hansen, K. & E. Kristensen, 1997. Impact of macrofaunal recolonization on benthic metabolism and nutrient fluxes in a shallow marine sediment previously overgrown with macroalgal mats. Estuar. coast. shelf Sci. 45: 613–628.

    Google Scholar 

  • Hartnett, H. E., R. G. Keil, J. I. Hedges & A. H. Devol, 1998. Influence of oxygen exposure time on organic carbon preservation in continental margin sediments. Nature 391: 572–574.

    Google Scholar 

  • Harvey, H. R., J. H. Tuttle & J. T. Bell, 1995. Kinetics of phytoplankton decay during simulated sedimentation: changes in biochemical composition and microbial activity under oxic and anoxic conditions. Geochim. Cosmochim. Acta 59: 3367–3378.

    Google Scholar 

  • Hedges, J. I. & R. G. Keil, 1995. Sedimentary organic matter preservation: an assessment and speculative synthesis. Mar. Chem. 49: 81–115.

    Google Scholar 

  • Henrichs, S. M. & W. S. Reeburgh, 1987. Anaerobic mineralization of marine sediment organic matter: rates and the role of anaerobic processes in the oceanic carbon economy. Geomicrobiol. J. 5: 191–237.

    Google Scholar 

  • Henriksen, K. & W. M. Kemp, 1988. Nitrification in estuarine and coastal marine sediments. In Blackburn, T. H. & J. Sørensen (eds), Nitrogen Cycling in Coastal Marine Environments. John Wiley & Sons Ltd., Chichester: 207–249.

    Google Scholar 

  • Hertweck, G., 1986. Burrows of the polychaete Nereis virens Sars. Senckenberg. marit. 17: 319–331.

    Google Scholar 

  • Howarth, R. W., 1984. The ecological significance of sulfur in the energy dynamics of salt marsh and coastal marine sediments. Biogeochemistry 1: 5–27.

    Google Scholar 

  • Huettel, M. & G. Gust, 1992a. Impact of bioroughness on interfacial solute exchange in permeable sediments. Mar. Ecol. Prog. Ser. 89: 253–267.

    Google Scholar 

  • Huettel, M. & G. Gust, 1992b. Solute release mechanisms from confined sediment cores in stirred benthic chambers and flume flows. Mar. Ecol. Prog. Ser. 82: 187–197.

    Google Scholar 

  • Hulthe, G., S. Hulth & P. O. J. Hall, 1998. Effect of oxygen on degradation rate of refractory and labile organic matter in continental margin sediments. Geochim. Cosmochim. Acta 62: 1319–1328.

    Google Scholar 

  • Hylleberg, J. & K. Henriksen, 1980. The central role of bioturbation in sediment mineralization and element re-cycling. Ophelia, Suppl. 1: 1–16.

    Google Scholar 

  • Jahnke, R., 1985. A model of microenvironments in deep-sea sediments: formation and effects on porewater profiles. Limnol. Oceanogr. 30: 956–965.

    Google Scholar 

  • Jensen, K., N. P. Revsbech & L. P. Nielsen, 1993. Microscale distribution of nitrification activity in sediment determined with a shielded microsensor for nitrate. Apl. envir. Microbiol. 59: 3287–3296.

    Google Scholar 

  • Jørgensen, B. B., 1977. Bacterial sulfate reduction within reduced microniches of oxidized marine sediments. Mar. Biol. 41: 7–17.

    Google Scholar 

  • Jørgensen, B. B., 1983. Processes at the sediment-water interface. In Bolin, B. & R. B. Cook (eds), The Major Biogeochemical Cycles and Their Interactions. SCOPE 21, Stockholm: 477–509.

    Google Scholar 

  • Jørgensen, B. B., 1989. Biogeochemistry of chemoautotrophic bacteria. In Schlegel, H. G. & B. Bowien (eds), Autotrophic Bacteria. Science Tech Publ. & Springer-Verlag, Madison: 117–146.

    Google Scholar 

  • Jørgensen, B. B., 1996. Material flux in the sediment. In Jørgensen, B. B. & K. Richardson (eds), Eutrophication in Coastal Marine Ecosystems (Coastal and Estuarine Studies 52). American Geophysical Union, Washington DC: 115–135.

    Google Scholar 

  • Jørgensen, B. B. & N. P. Revsbech, 1983. Colorless sulfur bacteria Beggiatoa spp. and Thiovulum spp. in O2 and H2S microgradients. Apl. envir. Microbiol. 45: 1261–1270.

    Google Scholar 

  • Jørgensen, B. B. & N. P. Revsbech, 1985. Diffusive boundary layers and the oxygen uptake of sediments and detritus. Limnol. Oceanogr. 30: 111–122.

    Google Scholar 

  • Jørgensen, B. B. & J. Sørensen, 1985. Seasonal cycles of O2, NO3 - and SO4 2- reduction in estuarine sediments: the significance of a NO3 - reduction maximum in spring. Mar. Ecol. Prog. Ser. 24: 65–74.

    Google Scholar 

  • Keil, R. G., D. B. Montlucon, F. G. Prahl & J. I. Hedges, 1994. Sorptive preservation of labile organic matter in marine sediments. Nature 370: 549–552.

    Google Scholar 

  • Kemp, W. M., P. A. Sampou, J. Garber, J. Tuttle & W. R. Bounton, 1992. Seasonal depletion of oxygen from bottom waters of Chesapeake Bay: roles of benthic and planktonic respiration and physical exchange processes. Mar. Ecol. Prog. Ser. 85: 137–152.

    Google Scholar 

  • Kikuchi, E., 1987. Effect of the brackish deposit-feeding polychaetes Notomastus sp. (Capitellidae) and Neanthes japonica (Izuka) (Nereidae) on sedimentary O2 consumption and CO2 production rates. J. exp. mar. Biol. Ecol. 114: 15–25.

    Google Scholar 

  • Klimant, I., V. Meyer & M. Kühl, 1995. Fiber-optic oxygen microsensors, a new tool in aquatic biology. Limnol. Oceanogr. 40: 1159–1165.

    Google Scholar 

  • Kristensen, E., 1984. Effect of natural concentrations on exchange of nutrients between a polychaete burrow in estuarine sediment and overlying water. J. exp. mar. Biol. Ecol. 75: 171–190.

    Google Scholar 

  • Kristensen, E., 1985. Oxygen and inorganic nitrogen exchange in a Nereis virens (Polychaeta) bioturbated sediment-water system. J. Coast. Res. 1: 109–116.

    Google Scholar 

  • Kristensen, E., 1988. Benthic fauna and biogeochemical processes in marine sediments: microbial activities and fluxes. In Blackburn, T. H. & J. Sørensen (eds), Nitrogen Cycling in Coastal Marine Environments. John Wiley & Sons Ltd., Chichester: 275–299.

    Google Scholar 

  • Kristensen, E., 1989. Oxygen and carbon dioxide exchange in the polychaete Nereis virens: influence of ventilation activity and starvation. Mar. Biol. 101: 381–388.

    Google Scholar 

  • Kristensen, E., 1993. Seasonal variations in benthic community metabolism and nitrogen dynamics in a shallow, organic poor Danish lagoon. Estuar. coast. shelf. Sci. 36: 565–586.

    Google Scholar 

  • Kristensen, E., S. I. Ahmed & A. H. Devol, 1995. Aerobic and anaerobic decomposition of organic matter in marine sediment: which is fastest? Limnol. Oceanogr. 40: 1430–1437.

    Google Scholar 

  • Kristensen, E., R. C. Aller & J. Y. Aller, 1991b. Oxic and anoxic decomposition of tubes from the burrowing sea-anemone Ceriantheopsis americanus: implications for sediment carbon and nitrogen dynamics. J. mar. Res. 49: 589–617.

    Google Scholar 

  • Kristensen, E., F. Ø. Andersen & T. H. Blackburn, 1992. Effects of benthic macrofauna and temperature on degradation of macroalgal detritus: the fate of organic carbon. Limnol. Oceanogr. 37: 1404–1419.

    Google Scholar 

  • Kristensen, E. & T. H. Blackburn, 1987. The fate of organic carbon and nitrogen in experimental marine sediment systems: influence of bioturbation and anoxia. J. mar. Res. 45: 231–257.

    Google Scholar 

  • Kristensen, E. & K. Hansen, 1995. Decay of plant detritus in organic-poor marine sediment: production rates and stoichiometry of dissolved C and N compounds. J. mar. Res. 53: 675–702.

    Google Scholar 

  • Kristensen, E. & K. Hansen, 1999. Transport of carbon dioxide and ammonium in bioturbated (Nereis diversicolor) coastal, marine sediments. Biogeochemistry 45: 147–168.

    Google Scholar 

  • Kristensen, E., M. H. Jensen & T. K. Andersen, 1985. The impact of polychaete (Nereis virens Sars) burrows on nitrification and nitrate reduction in estuarine sediments. J. exp. mar. Biol. Ecol. 85: 75–91.

    Google Scholar 

  • Kristensen, E., M. H. Jensen & R. C. Aller, 1991a. Direct measurement of dissolved inorganic nitrogen exchange and denitrification in individual polychaete (Nereis virens) burrows. J. mar. Res. 49: 355–377.

    Google Scholar 

  • Kristensen, E., M. H. Jensen & K. M. Jensen, 1998. Sulfur dynamics in sediments of Königshafen. In Gätje, C. & K. Reise (eds), Ökosystem Wattenmeer-Austausch-, Transport-und Stoffumwandlungsprozesse. Springer-Verlag, Berlin: 233–256.

    Google Scholar 

  • Kühl, M. & B. B. Jørgensen, 1994. The light field of microbenthic communities: radiance distribution and microscale optics of sandy coastal sediments. Limnol. Oceanogr. 39: 1368–1398.

    Google Scholar 

  • Lee, C., 1992. Controls on organic carbon preservation: the use of stratified water bodies to compare intrinsic rates of decomposition in oxic and anoxic systems. Geochim. Cosmochim. Acta 56: 3323–3335.

    Google Scholar 

  • Mackin, J. E. & K. T. Swider, 1989. Organic matter decomposition pathways and oxygen consumption in coastal marine sediments. J. mar. Res. 47: 681–716.

    Google Scholar 

  • Mayer, L. M., 1994. Surface area control of organic carbon accumulation in continental shelf sediments. Geochim. Cosmochim. Acta 58: 1271–1284.

    Google Scholar 

  • Mayer, M. S., L. Schaffner & W. M. Kemp, 1995. Nitrification potentials of benthic macrofaunal tubes and burrow walls: effects of sediment NH4 + and animal irrigation behavior. Mar. Ecol. Prog. Ser. 121: 157–169.

    Google Scholar 

  • Møller, J. S., 1996. Water masses, stratification and circulation. In Jørgensen, B. B. & K. Richardson (eds), Eutrophication in Coastal Marine Ecosystems (Coastal and Estuarine Studies 52). American Geophysical Union, Washington DC: 51–66.

    Google Scholar 

  • Nielsen, L. P., 1992. Denitrification in sediment determined from nitrogen isotope pairing. FEMS Microbiol. Ecol. 86: 357–362.

    Google Scholar 

  • Rasmussen, H. & B. B. Jørgensen, 1992. Microelectrode studies of seasonal oxygen uptake in a coastal sediment: role of molecular diffusion. Mar. Ecol. Prog. Ser. 81: 289–303.

    Google Scholar 

  • Reichardt, W., 1988. Impact of bioturbation by Arenicola marina on microbiological parameters in intertidal sediments. Mar. Ecol. Prog. Ser. 44: 149–158.

    Google Scholar 

  • Reimers, C. E., 1987. An in situ microprofiling instrument for measuring interfacial pore water gradients: methods and oxygen profiles from the North Pacific Ocean. Deep Sea Res. 34: 2019–2035.

    Google Scholar 

  • Reimers, C. E., K. M. Fischer, R. Merewether, K. L. Smith Jr. & R. A. Jahnke, 1986. Oxygen microprofiles measured in situ in deep ocean sediments. Nature 320: 741–744.

    Google Scholar 

  • Reise, K., 1981. High abundance of small zoobenthos around biogenic structures in tidal sediments of the Wadden Sea. Helgolënder wiss. Meeresunters. 34: 413–425.

    Google Scholar 

  • Revsbech, N. P., 1989. An oxygen microsensor with a guard cathode. Limnol. Oceanogr. 34: 474–478.

    Google Scholar 

  • Revsbech, N. P. & B. B. Jørgensen, 1986. Microelectrodes: Their use in microbial ecology. Adv. Microb. Ecol. 9: 293–352.

    Google Scholar 

  • Revsbech, N. P., B. B. Jørgensen, T. H. Blackburn & Y. Cohen, 1983. Microelectrode studies of the photosynthesis and O2, H2S and pH profiles of a microbial mat. Limnol. Oceanogr. 28: 1062–1074.

    Google Scholar 

  • Revsbech, N. P., B. B. Jørgensen & O. Brix, 1981. Primary production in sediments measured by oxygen microprofiles H14CO3 - fixation, and oxygen exchange methods. Limnol. Oceanogr. 26: 717–730.

    Google Scholar 

  • Revsbech, N. P., B. Madsen & B. B. Jørgensen, 1986. Oxygen production and consumption in sediments determined at high spatial resolution by computer simulation of oxygen microelectrode data. Limnol. Oceanogr. 31: 293–304.

    Google Scholar 

  • Revsbech, N. P., J. Sørensen, T. H. Blackburn & J. P. Lomholt, 1980. Distribution of oxygen in marine sediments measured with microelectrodes. Limnol. Oceanogr. 25: 403–411.

    Google Scholar 

  • Revsbech, N. P. & D. M. Ward, 1983. Oxygen microelectrode that is insensitive to medium chemical composition: use in an acid microbial mat dominated by Cyanidium caldarium. Apl. envir. Microbiol. 45: 755–759.

    Google Scholar 

  • Riisgård, H. U., 1991. Suspension feeding in the polychaete Nereis diversicolor. Mar. Ecol. Prog. Ser. 70: 29–37.

    Google Scholar 

  • Santschi, P. H., P. Bower, U. P. Nyffeler, A. Azvedo & W. S. Broecker, 1983. Estimates of the resistance of chemical transport posed by the deep-sea boundary layer. Limnol. Oceanogr. 28: 899–912.

    Google Scholar 

  • Schink, B., 1988. Principles and limits of anaerobic degradation: Environmental and technological aspects. In Zehnder, A. J. B. (ed.), Biology of Anaerobic Microorganisms. John Wiley & Sons Ltd., New York: 771–846.

    Google Scholar 

  • Schlüter, M., 1991. Organic carbon flux and oxygen penetration into sediments of the Weddell Sea: indicators for regional differences in export production. Mar. Chem. 35: 569–579.

    Google Scholar 

  • Smith, K. L., Jr. & R. J. Baldwin, 1984. Seasonal fluctuations in deep-sea sediment community oxygen consumption: central and eastern North Pacific. Nature 307: 624–625.

    Google Scholar 

  • Stigebrandt, A. & F. Wulff, 1987. A model for the dynamics of nutrients and oxygen in the Baltic proper. J. mar. Res. 45: 729–759.

    Google Scholar 

  • Suess, E., 1980. Particulate organic carbon flux in the oceans-surface productivity and oxygen utilization. Nature 288: 260–263.

    Google Scholar 

  • Sun, M.-Y., C. Lee & R. C. Aller, 1993b. Anoxic and oxic degradation of 14C-labeled chloropigments and a 14C-labeled diatom in Long Island Sound sediments. Limnol. Oceanogr. 38: 1438–1451.

    Google Scholar 

  • Sun, M.-Y., C. Lee & R. C. Aller, 1993a. Laboratory studies of oxic and anoxic degradation of chlorophyll-a in Long Island Sound sediments. Geochim. Cosmochim. Acta 57: 147–158.

    Google Scholar 

  • Sun, M.-Y., S. G. Wakeham & C. Lee, 1997. Rates and mechanisms of fatty acid degradation in oxic and anoxic coastal marine sediments of Long Island Sound, New York, U.S.A. Geochim. Cosmochim. Acta 61: 341–356.

    Google Scholar 

  • Thamdrup, B, H. Fossing & B. B. Jørgensen, 1994. Manganese, iron and sulfur cycling in a coastal marine sediment, Aarhus Bay, Denmark. Geochim. Cosmochim. Acta 58: 5115–5130.

    Google Scholar 

  • Thamdrup, B., J. W. Hansen & B. B. Jørgensen, 1998. Temperature dependence of aerobic respiration in a coastal sediment. FEMS Microbiol. Ecol. 25: 189–200.

    Google Scholar 

  • Vetter, E. F. & C. S. Hopkinson, Jr., 1985. Influence of white shrimp (Penaeus setiferus) on benthic metabolism and nutrient flux in a coastal marine ecosystem: Measurements in situ. Contr. Mar. Sci. 28: 95–107.

    Google Scholar 

  • Westrich, J. T. & R. A. Berner, 1984. The role of sedimentary organic matter in bacterial sulfate reduction: the G model tested. Limnol. Oceanogr. 29: 236–249.

    Google Scholar 

  • Wetzel, M. A., P. Jensen & O. Giere, 1995. Oxygen/sulfide regime and nematode fauna associated with Arenicola marina burrows: new insights in the thiobios case. Mar. Biol. 124: 301–312.

    Google Scholar 

  • Ziebis, W., S. Forster, M. Huettel & B. B. Jørgensen, 1996. Complex burrows of the mud shrimp Callianassa truncata and their geochemical impact in the sea bed. Nature 382: 619–622.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kristensen, E. Organic matter diagenesis at the oxic/anoxic interface in coastal marine sediments, with emphasis on the role of burrowing animals. Hydrobiologia 426, 1–24 (2000). https://doi.org/10.1023/A:1003980226194

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003980226194

Navigation