Skip to main content
Log in

3-Mercaptopropyltrimethoxysilane as a Cu corrosion inhibitor in KCl solution

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

3-mercaptopropyltrimethoxysilane (MPS) has been used as a copper corrosion inhibitor in 0.100 mol L−1 KCl solution. The inhibition was studied as a function of the MPS pretreatment concentration in ethanol. The MPS concentration used was between 1.0 × 10−8 mol L−1 and 1.0 × 10−1 mol L−1. A freshly-cleaned Cu electrode was inserted in an ethanolic solution of MPS for 30 min for pretreatment, and was then exposed to a 0.100 mol L−1 KCl aqueous solution for 1 h. From the polarization resistance, the inhibition efficiency improved with increase in MPS concentration during the pretreatment. The MPS adsorption on Cu followed a Langmuir adsorption behaviour. However, at MPS concentrations larger than 1.0 × 10−4 mol L−1 the inhibition decreased. Moreover, the inhibition efficiency decreased with increase in the exposure time of the MPS modified Cu electrode in the KCl aqueous solution. Polarization studies suggest that MPS is an anodic as well as a cathodic inhibitor, in the presence of dissolved oxygen. X-ray photoelectron spectroscopy (XPS) analysis of the Cu samples showed that the organic compound modifies the Cu surface and scanning electron microscopy (SEM) studies indicated that MPS protects the Cu surface when exposed for 350 h to laboratory environment. Polarized grazing angle Fourier transform-infrared (FTIR) microscopy analysis determined the presence of a polymer on the Cu surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Trabanelli, in F. Mansfeld (Ed.), ‘Corrosion Mechanisms’ (Marcel Dekker, New York, 1987), p. 119.

    Google Scholar 

  2. K. Tatsuya, N. Hiroshi and A. Kunitsugu, J. Electrochem. Soc. 143 (1996) 3866.

    Google Scholar 

  3. A.N. Starchak, A.N. Krasovskii, V.A. Anishchenko and L.D. Kosukhina, Zashch. Met. 30 (1994) 405.

    Google Scholar 

  4. M. Th. Makhlouf, S.A. El-Shatory and A. El-Said, Mater. Chem. Phys. 43 (1996) 76.

    Google Scholar 

  5. M. Th. Makhlouf and M.H. Wahdan, Pol. J. Chem. 69 (1995) 1072.

    Google Scholar 

  6. M. Th. Makhlouf, M.H. Wahdan and M. Hassan, ACH-Models Chem. 132 (1995) 903.

    Google Scholar 

  7. M.H. Wahdan, Mater. Chem. Phys. 49 (1997) 135.

    Google Scholar 

  8. Y.I. Mikshis, L.A. Rastenite and A.I. Rutavichus, Pot. Met. 33 (1997) 288.

    Google Scholar 

  9. A. Srhiri, Y. Derbali and T. Picaud, Corrosion 51 (1995) 788.

    Google Scholar 

  10. S. Sankarapapavinasam and M.F. Ahmed, J. Appl. Electrochem. 22 (1995) 390.

    Google Scholar 

  11. G. Brunoro, A. Frignani and L. Tommesani, Ann. Univ. Ferrara, Sez. V, Suppl. 10, (1995), p. 1053.

  12. K. Mori and Y. Nakamura, J. Polym. Sci. Polym. Let. Ed. 21 (1983) 889.

    Google Scholar 

  13. D.L. Seymour, S. Bao, C.F. McConville, M.D. Crapper, D.P. Woodruff and R.G. Jones, Surf. Sci. 189/190 (1987) 529.

    Google Scholar 

  14. J.Y. Gui, D.A. Stern, D.G. Frank, F. Lu, D.C. Zapien and A. Hubbard, Langmuir 7 (1991) 955.

    Google Scholar 

  15. J. Uehara and K. Aramaki, J. Electrochem. Soc. 138 (1991) 3245.

    Google Scholar 

  16. M.D. Porter, T.B. Bright, D.L. Allara and C.E.D. Chidsey, J. Am. Chem. Soc. 109 (1987) 3559.

    Google Scholar 

  17. G.M. Whitesides and P.E. Laibinis, Langmuir 6 (1990) 87.

    Google Scholar 

  18. M.M. Walczak, C. Chung, S.M. Stole, C.A. Widrig and M.D. Porter, J. Am. Chem. Soc. 113 (1991) 2370.

    Google Scholar 

  19. C.A. Widrig, C. Chung and M.D. Porter, J. Electroanal. Chem. 310 (1991) 335.

    Google Scholar 

  20. S.M. Stole and M.D. Porter, Langmuir 6 (1990) 1199.

    Google Scholar 

  21. P.E. Laibinis, G.M. Whitesides, D.L. Allara, Y.T. Tao, A.N. Parikh and R.G. Nuzzo, J. Am. Chem. Soc. 113 (1991) 7152.

    Google Scholar 

  22. P.E. Laibinis and G.M. Whitesides, J. Am. Chem. Soc. 114 (1992) 1990.

    Google Scholar 

  23. L.C.F. Blackman and M.J.S. Dewar, J. Chem. Soc. 171 (1990) 1957.

    Google Scholar 

  24. M. Musiani M.G. Mengoli, M. Fleischmann and R.B. Lowry, J. Electroanal. Chem. 217 (1987) 187.

    Google Scholar 

  25. M. Ohsawa and W. Suetaka, Corros. Sci. 19 (1979) 709.

    Google Scholar 

  26. G. Trabanelli and V. Carassitti, in M.G. Fontana and R.W. Staehle (Eds), ‘Advances in Corrosion Science and Technology’ Vol. 1 (Plenum Press, New York, 1970), p. 147.

    Google Scholar 

  27. J.C. Marconato, L.O. Bulhes and M.L. Temperini, Electrochim. Acta 43 (1998) 771.

    Google Scholar 

  28. R. Haneda and K. Aramaki, J. Electrochem. Soc. 145 (1998) 1856.

    Google Scholar 

  29. R. Haneda, H. Nishihara and K. Aramaki, J. Electrochem. Soc. 144 (1997) 1215.

    Google Scholar 

  30. K. Suwa, T. Nishimoto, Y. Nagaoka and S. Aida, Bull. Soc. Salt Sci. Jpn. 15 (1961) 153.

    Google Scholar 

  31. Y. Yamamoto, H. Nishihara and K. Aramaki, J. Electrochem. Soc. 140 (1993) 436.

    Google Scholar 

  32. C. Miller, P. Cuendet and M. Gratzel, J. Phys. Chem. 95 (1991) 877.

    Google Scholar 

  33. C. Miller and M. Gratzel, J. Phys. Chem. 95 (1991) 5225.

    Google Scholar 

  34. Y. Yamamoto, H. Nischihara and K. Aramaki, J. Electrochem. Soc. 140 (1993) 2.

    Google Scholar 

  35. M. Itoh, H. Nishihara and K. Aramaki, J. Electrochem. Soc. 141 (1994) 8.

    Google Scholar 

  36. W.R. Thompson, M. Cai, M. Ho and J.E. Pemberton, Langmuir 13 (1997) 2291.

    Google Scholar 

  37. M. Itoh, H. Nishihara and K. Aramaki, J. Electrochem. Soc. 142 (1995) 6.

    Google Scholar 

  38. Y. Fend, W.-K. Teo, K.-S. Siow, Z. Gao, K.-L. Tan and A.-K. Hsieh, J. Electrochem. Soc. 144 (1997) 1.

    Google Scholar 

  39. H.P. Lee and K. Nobe, J. Electrochem. Soc. 133 (1986) 2035.

    Google Scholar 

  40. A.M. Beccaria and C. Bertolotto, Electrochim. Acta 42 (1997) 9.

    Google Scholar 

  41. S. Sankarapapavinasam and M.F. Ahmed, J. Appl. Electrochem. 22 (1990) 390.

    Google Scholar 

  42. R. Zvauya and J.L. Dawson, J. Appl. Electrochem. 24 (1994) 943.

    Google Scholar 

  43. L.H. Dubois and R.G. Nuzzo, Annu. Rev. Phys. 43 (1992) 437.

    Google Scholar 

  44. A. Morneau, A. Manivannan and C.R. Cabrera, Langmuir 10 (1994) 3940.

    Google Scholar 

  45. J. Wood and R. Sharman, Langmuir 10 (1994) 2307.

    Google Scholar 

  46. G. Che and C.R. Cabrera, J. Electroanal. Chem. 417 (1996) 155.

    Google Scholar 

  47. G. Che, A. Manivannan and C.R. Cabrera, Physica A 231 (1996) 304.

    Google Scholar 

  48. S.K. Jung and G.S. Wilson, Anal. Chem. 68 (1996) 591.

    Google Scholar 

  49. M. Itoh, H. Nishihara and K.J. Aramaki, J. Electrochem. Soc. 142 (1995) 3696.

    Google Scholar 

  50. W.R. Thompson and J.E. Pemberton, Chem. Mater. 7 (1995) 1309.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tremont, R., De Jesús-Cardona, H., García-Orozco, J. et al. 3-Mercaptopropyltrimethoxysilane as a Cu corrosion inhibitor in KCl solution. Journal of Applied Electrochemistry 30, 737–743 (2000). https://doi.org/10.1023/A:1004072117517

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004072117517

Navigation