Skip to main content
Log in

Pulse plating of cobalt–iron–copper alloys

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Pulse plating of cobalt–iron–copper (CoFeCu) alloys was studied. A simple theoretical model with an analytical solution developed for binary alloys is applied to predict the copper content of the pulse plated ternary alloys. Studied compositions are in the range of Co90-x Fe10Cu x with x varying between 5 to 20 wt%. These compositions are of interest as soft magnetic materials with high saturation magnetization. The deposits were produced from a boric acid and sodium acetate electrolyte with low concentrations of copper and iron. All experiments were carried out under well-controlled mass transport conditions and current distribution using a recessed rotating cylinder electrode (rRCE) or an inverted rotating disc electrode (IrRDE). With the latter design alloys can be plated on flat substrates with or without application of a magnetic field to induce uniaxial magnetic anisotropy. Results show that by changing pulse parameters one can increase and decrease in opposite ways the copper and the iron content in the deposits. To test the influence of pulse parameters on the coercive field strength, a microstructure dependent property, theoretical predictions were used to produce films of identical composition with different pulse parameters. Within the range of pulse parameters studied the coercive field strength of this alloy does not vary. Transmission electron microscopy confirms that the deposits have the same nano-size grain structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Pfeifer and C. Radeloff, J. Magn. Magn. Mat. 19 (1980) 190.

    Google Scholar 

  2. S.H. Liao, IEEE Trans. Magn. MAG23 (1987) 2981.

    Google Scholar 

  3. S.H. Liao and C.H. Tolman, US Patent 4 756 816, 12 July (1988).

  4. C.H. Tolman, J. Appl. Phys. 38 (1967) 3409.

    Google Scholar 

  5. G. Herzer, ‘Handbook of Magnetic Materials', Vol. 10, (Elsevier Science, 1997), Chap. 3, p. 415.

  6. Yu.A. Durasova and N.T. Nikitina, Izr. Akad. Nauk. USSR, serie Fizika XXIX (1965) 557.

  7. L.T. Romankiw and D.A. Thompson, ‘Properties of Electrodeposits, Their Measurement and Signifficance’ (The Electrochemical Society, Penington, NJ, 1976), Chap. 23, p. 407.

    Google Scholar 

  8. N.C. Anderson and R.B. Chesnutt, US Patent 4 661 216, 28 Apr. (1987).

  9. J.W. Chang, P.C. Andricacos, B. Petek and L.T. Romankiw, Proc. First International Symposium on ‘Magnetic Materials, Processes and Devices', Vol. 90-8, The Electrochemical Society, Hollywood, FA (1989), p. 361.

    Google Scholar 

  10. S.H. Liao, US Patent 5 168 410, 1 Dec. (1992).

  11. T. Osaka, 194th Meeting of The Electrochemical Society, Vol. 98-2, Boston MA Nov. (1998), Abstract 487.

  12. M. Takai, K. Hayashi, M. Aoyagi and T. Osaka, J. Electrochem. Soc. 144 (1997) L203.

    Google Scholar 

  13. J.W. Chang, P.C. Andricacos, B. Petek and L.T. Romankiw, Proc. Second International Symposium on ‘Magnetic Materials, Processes and Devices', Vol. 92-10, The Electrochemical Society, Phoenix, AZ (1991), p. 275.

    Google Scholar 

  14. J.W. Chang, P.C. Andricacos and L.T. Romankiw, Proc. Second International Symposium, ref. [13], p. 315

    Google Scholar 

  15. P.C. Andricacos and N. Robertson, IMB J. Res. Develop. 42 (1998) 671.

    Google Scholar 

  16. J.W. Chang, P.C. Andricacos, B. Petek, P.T. Troilloud and L.T. Romankiw, 194th Meeting of The Electrochemical Society, ref. [11], Abstract 488.

  17. G. Poupon, 194th Meeting of The Electrochemical Society, ref. [11], Abstract 490.

  18. T. Osaka, M. Takai, K. Hayashi, K. Ohashi, M. Saito and K. Yamada, Nature 392 (1998) 796.

    Google Scholar 

  19. T. Osaka, 194th Meeting of The Electrochemical Society, ref. [11], Abstract 491.

  20. Y. Omata and N. Kaminaka, Proc. Second International Symposium, ref. [13], p. 255

    Google Scholar 

  21. J.-M. Maire and G. Poupon, 194th Meeting of The Electrochemical Society, ref. [11], Abstract 491.

  22. S. Roy, M. Matlosz and D. Landolt, J. Electrochem. Soc. 141 (1994) 1509.

    Google Scholar 

  23. S. Roy and D. Landolt, J. Electrochem. Soc. 142 (1995) 3021.

    Google Scholar 

  24. P.E. Bradley, S. Roy and D. Landolt, J. Chem. Soc., Trans. Farad. 92 (20) (1996) 4015.

    Google Scholar 

  25. P.E. Bradley and D. Landolt, Electrochim. Acta 42 (1997) 993.

    Google Scholar 

  26. P.E. Bradley, Thesis no. 1785, EPFL Lausanne (1998).

  27. P.E. Bradley and D. Landolt, Electrochim. Acta 45 (1999) 1077.

    Google Scholar 

  28. P.E. Bradley, D. Landolt and W.E. Bradley, Swiss Patent Appl. CF/1996 1683/96.

  29. P.E. Bradley and D. Landolt, J. Electrochem. Soc. 144 (1997) L145.

    Google Scholar 

  30. A.J. Bard and L.R. Faulkner, ‘Electrochemical Methods, Fundamentals and Applications’ (J. Wiley & Sons, New York), p. 291.

  31. W.G. Levich, ‘Physichochemical Hydrodynamics’ (Prentice-Hall, Englewoods Cliffs, NJ, 1962), p. 60.

    Google Scholar 

  32. M. Eisenberg, C.W. Tobias and C.R. Wilke, J. Electrochem. Soc. 101 (1954) 306.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bradley, P., Janossy, B. & Landolt, D. Pulse plating of cobalt–iron–copper alloys. Journal of Applied Electrochemistry 31, 137–144 (2001). https://doi.org/10.1023/A:1004155000693

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004155000693

Navigation