Skip to main content
Log in

Stress-induced phase transformations in a hot-deformed two-phase (α2+γ) TiAl alloy

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Stress-induced γ→α2, α2→γ and γ→9R phase transformations in a hot-deformed Ti–45 at% Al–10 at% Nb alloy have been investigated using high-resolution transmission electron microscopy. The γ→α2 phase transformation is an interface-related process. The interfacial superdislocations emitted from the misoriented semicoherent α2–γ interface react with each other or with the moving dislocations in the γ phase, resulting in the formation of the α2 phase. The nucleation of the α2→γ phase transformation takes place either at the α2–γ interfaces or at the stacking faults on the basal plane of α2 phase, and the growth of γ plate is accomplished by the moving of a/6〈1 0 1 0〉 Shockley partials on alternate basal plane (0 0 0 1)α2. The 9R structure was usually found to form at incoherent twin or pseudotwin boundaries. During deformation the interfacial Shockley partial dislocations of these incoherent twin and pseudotwin boundaries may glide on (1 1 1)γ planes into the matrix, resulting in the formation of 9R structure. The interfaces (including α2–γ and γ–γ interfaces) as well as the crystallographic orientation relationship between the as-received or stress-induced α2, γ and 9R phase have been analysed. The mechanisms for the stress-induced γ→α2, α2→γ and γ→9R phase transformations were also discussed. © 1998 Chapman & Hall

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. W. Kim, J. Metals 46 (1994) 30.

    Google Scholar 

  2. Y. W. Kim and D. M. Dimiduk, ibid. 43 (1991) 40.

    Google Scholar 

  3. M. A. Morris, Phil. Mag. A 68 (1993) 237, 259.

    Google Scholar 

  4. M. Yamaguchi and H. Inui, in: “Structural intermetallics”, edited by R. Darolia, J. J. Lewandawski, C. T. Liu, P. L. Martin, D. B. Miracle and M. V. Nathal (The Minerals, Metals and Materials Society, New York, 1993) p. 127.

    Google Scholar 

  5. J. G. Wang, PhD thesis, University of Science and Technology Beijing, Beijing (1994).

  6. G. L. Chen, Y. D. Huang, W. Y. Yang and Z. Q. Sun, in: “Processing, properties and applications of Fe3Al based aluminides”, edited by J. H. Schneibel and M. A. Crimp, Metallurgical Society of AIME, Warendale, PA, (1994) p. 131.

    Google Scholar 

  7. S. R. Singh and J. M. Howe, Phil. Mag. Lett. 65 (1992) 233.

    Google Scholar 

  8. F. Appel, P. A. Beaven and R. Wagner, Acta Metall. Mater. 41 (1993) 1721.

    Google Scholar 

  9. C. R. Feng, D. J. Michel and C. R. Crowe, Scripta Metall. 23 (1989) 241.

    Google Scholar 

  10. C. R. Feng, D. J. Michel and C. R. Crowe, Mater. Sci. Engng. A145 (1991) 257.

    Google Scholar 

  11. Y. Gao, J. Zhu, H. Shen and Y. Wang, Scripta Metall. Mater. 28 (1993) 651.

    Google Scholar 

  12. Y. G. Zhang, F. D. Ticheaar, F. W. Schapink, Q. Xu and C. Q. Chen, ibid. 32 (1995) 981.

    Google Scholar 

  13. G. L. Chen, W. J. Zhang, Y. D. Wang, J. G. Wang and Z. Q. Sun, in “Structural intermetallics”, edited by R. Darolia, J. J. Lewandawski, C. T. Liu, P. L. Martin, D. B. Miracle and M. V. Nathal (The Minerals, Metals and Materials Society, New York, 1993) p. 319.

    Google Scholar 

  14. G. L. Chen, J. G. Wang, L. C. Zhang and H. Q. Ye, Acta Metall. Sin. (Engl. Lett.) 8 (1995) 273.

    Google Scholar 

  15. J. G. Wang, L. C. Zhang, G. L. Chen and H. Q. Ye, unpublished research (1996).

  16. J. G. Wang, G. L. Chen, L. C. Zhang and H. Q. Ye, in Proceedings of Second International Symposium on Structural Intermetallics, Seven Springs, 1997, submitted.

  17. J. G. Wang, L. C. Zhang, G. L. Chen and H. Q. Ye, Scripta Metall. Mater. 37 (1997) 135.

    Google Scholar 

  18. J. G. Wang, G. L. Chen, L. C. Zhang and H. Q. Ye, Mater. Lett. 31 (1997) 179.

    Google Scholar 

  19. Y. S. Yang and S. K. Wu, Scripta Metall. Mater. 24 (1990) 1801.

    Google Scholar 

  20. Y. S. Yang and S. K. Wu, Phil. Mag. A 65 (1992) 15.

    Google Scholar 

  21. Z. Nishiyama and S. Kajiwara, Jpn. J. Appl. Phys. 2 (1963) 478.

    Google Scholar 

  22. L. R. Zhao and K. Tangri, Phil. Mag. A 64 (1991) 361.

    Google Scholar 

  23. W. Wunderlich, T. Kremser and G. Frommeyer, Z. Metallkde 81 (1990) 802.

    Google Scholar 

  24. J. P. Hirth and R. W. Balluffi, Acta Metall. 21 (1973) 929.

    Google Scholar 

  25. M. Andrade, M. Chandrasekaran and L. Delaey, ibid. 32 (1984) 1809.

    Google Scholar 

  26. J. M. Cook, M. A. Oõkeefe, D. J. Smith and M. W. Stobbs, J. Microsc. 129 (1983) 295.

    Google Scholar 

  27. F. C. Lovey, Acta Metall. 35 (1987) 1103.

    Google Scholar 

  28. P. J. Othen, M. L. Jenkins and G. D. W. Smith, Phil. Mag. A 70 (1994) 1.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J.G., Zhang, L.C., Chen, G.L. et al. Stress-induced phase transformations in a hot-deformed two-phase (α2+γ) TiAl alloy. Journal of Materials Science 33, 2563–2571 (1998). https://doi.org/10.1023/A:1004397001175

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004397001175

Keywords

Navigation