Skip to main content
Log in

Mechanochemical synthesis and properties of thermoelectric material β-FeSi2

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The mechano-chemical synthesis of thermoelectric material on the basis of β-FeSi2 has been investigated. The mixture of FeSi and amorphous Si has been shown to be a optimum precursor to produce the thermoelectric ceramics. The ceramics properties (thermoelectric power α, μV/K, electrical conductivity σ 1/Ω*cm) have been considerably improved by means of doping with superequilibrium quantity of 12% of aluminium (substitution of silicon) or 10% of cobalt (substitution of iron). The mechanical alloying in a high energy ball mill, under the acceleration of treating balls 800 m/sec2 produced homogeneous powder with a superequilibrium quantity of dopant, which conversed into thermoelectric ceramics after short annealing in vacuum at low temperature (780°C). The samples of ceramics with the maximum content of doping elements have increased thermoelectromotive force-up to 800 μV/K. Mechanically alloyed ceramic is a promising material as a medium temperature thermoelectric with advanced properties for autonomous power supply units.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. J. Goldsmidt, “Thermoelectric Refrigeration” (Temple Press Books, London, 1964).

    Google Scholar 

  2. L. I. Anatychuk, “Thermoelements and Thermoelectric Devices: Handbook” (Naukova Dumka, Kiev, 1976), in Russian.

  3. V. K. Zaitsev and M. I. Fedorov, Physics and Technics of Semiconductors 29(5) (1995) 946, in Russian.

    Google Scholar 

  4. E. V. Osipov, “Solid State Cryogenic” (Naukova Dumka, Kiev, 1977) in Russian.

  5. R. M. Ware and D. J. McNeill, Proc. Inst. Electr. Eng. 117 (1964) 178.

    Google Scholar 

  6. M. Umemoto, Mater. Trans. JIM 36(2) (1995) 373.

    Google Scholar 

  7. N. Malhourouhx-Gaffet and E. Gaffet, J. Alloys and Compounds 198 (1993) 143.

    Google Scholar 

  8. A. H. Reader, A. H. Van Ommen et al., Transition Metal Silicides in Silicon Technology, Rep. Prog. Phys. 56 (1992) 1402.

    Google Scholar 

  9. C. Le Corre and J. M. Genin,Phys. status solidi 51B (1972) 85.

    Google Scholar 

  10. I. N. Strukov and P. V. Geld,Fizika Metallov i Metallovedenie (FMM) 3(3) (1956) 564, in Russian.

    Google Scholar 

  11. T. Novetand D. C. Johnson,J. Am. Chem. Soc. 113 (1991) 3398.

    Google Scholar 

  12. J. Hesse, Z. Angew. Phys. 28(3) (1969) 133.

    Google Scholar 

  13. Idem., Z. Metallkde. 60(8) (1969) 652.

    Google Scholar 

  14. J. Ennas et al, J. Mater. Sci. 24(9) (1989) 3053.

    Google Scholar 

  15. T. D. Shen, J. T. Wang, M. X. Quan and W. D. Wei, ibid. 150 (1992) 464.

    Google Scholar 

  16. E. Gaffet, N. Malhouroux and M. Abdellaoui,J. Alloys and Compounds 194 (1993) 339.

    Google Scholar 

  17. H. Nagai, Mater. Trans. JIM 36(2) (1995) 365.

    Google Scholar 

  18. M. S. Boldrick, E. Yang and C. N. G. Wagner, J. Non-Cryst. Solids 150 (1992) 478.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belyaev, E., Mamylov, S. & Lomovsky, O. Mechanochemical synthesis and properties of thermoelectric material β-FeSi2. Journal of Materials Science 35, 2029–2035 (2000). https://doi.org/10.1023/A:1004795225326

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004795225326

Keywords

Navigation