Skip to main content
Log in

The Mechanism of Fractal-Like Structure Formation by Bacterial Populations

  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

Three types of population growth and development of chemotaxic motile bacteria Escherichia coli on semi-solid nutrient media are investigated: a) stable development – circular symmetrical waves; b) bursts; c) fractal-like self-organization. Experimental investigation of the burst formation is presented. The microscopic analysis of growing, fractal-like structures is carried out, and a mechanism for such structure formation is suggested. It is supposed that fractal-like bacterial structures growth is based on the principle of successively forming multiple micro-bursts. A mathematical model has been suggested to reproduce the experimental results. The structures obtained by numerical modeling of population growth in the parameter space ‘substrate concentration - bacterial movement rate’ reproduce the corresponding experimental structures in the space ‘nutrient concentration in the media – the density of the media’.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adler, J.: Effect of amino acids and oxygen on chemotaxis in E. coli, J. Bacteriol. 92 (1966), 121–129.

    Google Scholar 

  2. Adler, J.: Chemotaxis in bacteria, Science 153 (1966), 708–716.

    Google Scholar 

  3. Keller, E.F. and Segel, L.A.: Model of chemotaxis, J. Theor. Biol. 30 (1971), 225–234.

    Google Scholar 

  4. Keller, E.F. and Segel, L.A.: Traveling bands of chemotactic bacteria, J. Theor. Biol. 30 (1971), 225–234.

    Google Scholar 

  5. Berg, H.C. and Brown, D.A.: Chemotaxis in Escherichia coli analysed by three dimensional tracking, Nature 239 (1972), 500–504.

    Google Scholar 

  6. Block, S. and Berg, H.C.: Successive incorporation of force-generating units in the bacterial rotary motor, Nature 309 (1984), 470–472.

    Google Scholar 

  7. Segall, J.E., Block, S. and Berg, H.C.: Temporal comparisons in bacterial chemotaxis, Proc. Natl. Acad. Sci. U.S.A. 83 (1986), 8987–8991.

    Google Scholar 

  8. Murray, J.: Mathematical Biology, Springer Verlag, Berlin, 1989.

    Google Scholar 

  9. Agladze, K., Budrene, E., Ivanitsy, G., Krinsky, V., Shakhbazyan, V. and Tsyganov, M.: Wave mechanisms of pattern formation in microbial populations, Proc. R. Soc. Lond. B 253 (1993), 131–135.

    Google Scholar 

  10. Ivanitsky, G.R., Medvinsky, A.B. and Tsyganov, M.A.: From disorder to order as applied to the movement of microorganisms, Usp. Fiz. Nauk 161 (1991), 13–71.

    Google Scholar 

  11. Brenner, M.P., Levitov, L.S. and Budrene, E.O.: Physical mechanisms for chemotactic pattern formation by bacteria, Biophys. J. 74 (1998), 1677–1693.

    Google Scholar 

  12. Budrene, E.O. and Berg, H.C.: Complex patterns formed by motile cells of Escherichia coli, Nature 349 (1991), 630–633.

    Google Scholar 

  13. Budrene, E.O. and Berg, H.: Dynamics of formation of symmetrical patterns by chemotactic bacteria, Nature 376 (1995), 49–53.

    Google Scholar 

  14. Woodward, D.E., Tyson, R., Myerscough, M., Murray, J., Budrene, E. and Berg, H.: Spatiotemporal patterns generated by salmonella, Biophys. J. 68 (1995), 2181–2189.

    Google Scholar 

  15. Ben-Jacob, E., Schochet, O., Tenenbaum, a., Cohen, I., Czirok, A. and Vicsek, T.: Generic modelling of cooperative growth patterns in bacterial colonies, Nature 368 (1994), 46–49.

    Google Scholar 

  16. Ben-Jacob, E., Shmueli, H., Schochet, O. and Tenenbaum, A.: Adaptive self-organization during growth of bacterial colonies, Phisica A 187 (1992), 378–424.

    Google Scholar 

  17. Ben-Jacob, E.: From snowflake formation to growth of bacterial colonies, Contemporary Physics 34(5) (1993), 247–273.

    Google Scholar 

  18. Ben-Jacob, E., Tenenbaum, A., Schochet, O. and Avidan, O.: Holotransformations of bacterial colonies and genome cybernetics, Phisica A 202 (1994), 1–47.

    Google Scholar 

  19. Kresteva, I.B., Tsyganov, M.A., Aslanidi, G.V., Medvinsky, A.B. and Ivanitsky, G.R.: The fractal self-organization in bacterial populations of E. coli: Experimental research, Dokl. Akad. Nauk 351(3) (1996), 406–409.

    Google Scholar 

  20. Tsyganov, M.A., Kresteva, I.B., Lysochenko, I.V., Medvinsky, A.B. and Ivanitsky, G.R.: The farctal self-organization in bacterial populations of E. coli: Computer modelling, Dokl. Akad. Nauk 351(4) (1996), 561–564.

    Google Scholar 

  21. Ivanitsky, G.R., Medvinsky, A.B. and Tsyganov, M.A.: From cell population wave dynamics to neuro-informatics, Usp. Fiz. Nauk 164(10) (1994), 1041–1072.

    Google Scholar 

  22. Medvinsky, A.B., Tsyganov, M.A., Kutyshenko, V.P., Shakhbazian, V.Yu., Kresteva, I.B. and Ivanitsky, G.R.: Instability of waves formed by motile bacteria, FEMS Microbiol. Lett. 112 (1993), 287–290.

    Google Scholar 

  23. Medvinsky, A.B., Tsyganov, M.A., Karpov, V.A., Kresteva, I.B., Shakhbazian, V.Yu. and Ivanitsky, G.R.: Bacterial population autowave pattern: Spontaneous symmetry bursting, Physica D 79 (1994), 299–305.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsyganov, M., Kresteva, I., Aslanidi, G. et al. The Mechanism of Fractal-Like Structure Formation by Bacterial Populations. Journal of Biological Physics 25, 165–176 (1999). https://doi.org/10.1023/A:1005153720027

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005153720027

Navigation