Skip to main content
Log in

COMPARISON OF GLOBAL CLIMATE CHANGE SIMULATIONS FOR 2 × CO2-INDUCED WARMING

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

In this article we compile 108 national and international studies on global climate change, each projecting a quantitative impact on global surface-air temperature due to a doubling of the atmospheric CO2 concentration. These predictions, documented between 1980 and 1995, are based primarily on climate-modeling research, including radiative-convective, energy-balance, and general circulation models. Collectively over the past 15 years, the average (mean) temperature change projection due to doubled CO2 is +2.62°C, with a range of 0.16–8.7°C. General circulation models tend to estimate slightly higher values (2.98°C), compared with radiative-convective models (1.98°C) and energy-balance models (2.54°C). During the years 1980 through 1995, an increasing trend in predictions is noticed, although the mean temperature change prediction each year has remained fairly consistent near 2–3°C. These findings suggest that the estimated sensitivity of the climate system continues to remain comparable to the range calculated in earlier studies. However, tremendous advancements in the capacity of climate models continue to reveal important uncertainties in the dynamic nature of global atmospheric interactions. The predictions continue to validate the need for a global policy relating to human influence on global climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aleksandrov, V. V., Arkhipov, P. L., Parkhomenko, V. P., and Stenchikov, G. L.: 1983, ‘Global Model of Ocean-Atmosphere System and an Investigation of its Sensitivity to a Variation of the CO2 Concentration’, Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana 19(5), 335-340.

    Google Scholar 

  • Bach, W., Jung, H. J., and Knottenberg, H.: 1985, Modeling the Influence of Carbon Dioxide on the Global and Regional Climate: Methodology and Results, Ferdinand Schoningh, Paderborn, pp. 49-63.

    Google Scholar 

  • Boer, G. J., McFarlone, N. A., and Lazare, M.: 1992, ‘Greenhouse Gas Induced Climate Change Simulated with the CCC 2nd Generation General Circulation Model’, J. Clim. 5, 1045-1077.

    Google Scholar 

  • Bolin, B., Döös, B. R., Jäger, J., and Warrick, R. A. (eds.): 1986, The Greenhouse Effect, Climatic Change, and Ecosystems, John Wiley and Sons, New York, p. 541.

    Google Scholar 

  • Bryan, K. and Spelman, M. J.: 1985, ‘The Ocean's Response to a Carbon Dioxide-Induced Warming’, J. Geophys. Res. 90, 11,679-11,688.

    Google Scholar 

  • Cao, H. X., Mitchell, J. F. B., and Lavery, J. R.: 1992, ‘Simulated Diurnal Range and Variability of Surface-Temperature in a Global Climate Model for Present and Doubled CO2 Climates’, J. Clim. 5, 920-943.

    Google Scholar 

  • Carbon Dioxide Assessment Committee, Board on Atmospheric Sciences and Climate, and National Research Council: 1983, Changing Climate, National Academy Press, Washington D.C., p. 496.

    Google Scholar 

  • Cess, R. D. and Goldenberg, S. D.: 1981, ‘The Effect of Ocean Heat Capacity upon Global Warming due to Increasing Atmospheric Carbon Dioxide’, J. Geophys. Res. 86, 498-502.

    Google Scholar 

  • Cess, R. D. and Potter, G. L.: 1984, ‘A Commentary on the Recent CO2-Climate Controversy’, Clim. Change 6, 365-376.

    Google Scholar 

  • Cess, R. D., Potter, G. L., Blanchet, J. P., Boer, G. J., Del Genio, A. D., Deque, M., Dymnikov, V., Galin, V., Gates, W. L., Ghan, S. J., Kiehl, J. T., Lacis, A. A., Le Treut, H., Li, Z. X., Liang, X. Z., McAvaney, B. J., Meleshko, V. P., Mitchell, J. F. B., Morcrette, J. J., Randall, D. A., Rikus, L., Roeckner, E., Royer, J. F., Schlese, U., Sheinin, D. A., Slingo, A., Sokolov, A. P., Taylor, K. E., Washington, W. M., Wetherald, R. T., Yagai, I., and Zhang, M. H.: 1990, ‘Intercomparison and Interpretation of Climate Feedback Processes in 19 Atmospheric General Circulation Models’, J. Geophys. Res. 95, 16,601-16,615.

    Google Scholar 

  • Cess, R. D., Potter, G. L., Blanchet, J. P., Boer, G. J., Ghan, S. J., Kiehl, J. T., Le Treut, H., Li, Z. X., Liang, X. Z., Mitchell, J. F. B., Morcrette, J. J., Randall, D. A., Riches, M. R., Roeckner, E., Schlese, U., Slingo, A., Taylor, K. E., Washington, W. M., Wetherald, R. T., and Yiang, I.: 1989, ‘Interpretation of Cloud-Climate Feedback as Produced by 14 Atmospheric General Circulation Models’, Science 245, 513-516.

    Google Scholar 

  • Cess, R. D., Potter, G. L., Zhang, M. H., Blanchet, J. P., Chalita, S., Colman, R., Dazlich, D. A., Del Genio, A. D., Dymnikov, V., Galin, V., Jerrett, D., Keup, E., Lacis, A. A., Le Treut, H., Liang, X. Z., Mahfouf, J. F., McAvaney, B. J., Meleshko, V. P., Mitchell, J. F. B., Morcrette, J. J., Norris, P. M., Randall, D. A., Rikus, L., Roeckner, E., Royer, J. F., Schlese, U., Sheinin, D. A., Slingo, J. M., Sokolov, A. P., Taylor, K. E., Washington, W. M., Wetherald, R. T., and Yagai, I.: 1991, ‘Interpretation of Snow-Climate Feedback as Produced by 17 General Circulation Models’, Science 253, 888-892.

    Google Scholar 

  • Charlock, T. P.: 1981, ‘Cloud Optics as a Possible Stabilizing Factor in Climate Change’, J. Atmos. Sci. 38, 661-663.

    Google Scholar 

  • Charlson, R. J., Schwartz, S. E., Hales, J. M., Cess, R. D., Coakley, J. A., Jr., Hansen, J. E., Hofmann, D. J.: 1992, ‘Climate Forcing by Anthropogenic Aerosols’, Science 255, 423-430.

    Google Scholar 

  • Charnock, H. and Shine, K. P.: 1993, ‘CO2's Greenhouse Contribution Debated’, Phys. Today 46, 66.

    Google Scholar 

  • Chou, M.-D., Arking, A., Peng, L.: 1982, ‘Climate Studies with a Multilayer Energy Balance Model 2. The Role of Feedback Mechanisms in the CO2 Problem’, J. Atmos. Sci. 39, 2657-2666.

    Google Scholar 

  • Clark, W. C. (ed.): Carbon Dioxide Review: 1982, Oxford University Press, New York, p. 469.

    Google Scholar 

  • Cubasch, U., Hasselmann, K., Hock, H., Maierreimer, E., Mikolajewicz, U., Santer, B. D., and Sausen, R.: 1992, ‘Time-Dependent Greenhouse Warming Computations with a Coupled Ocean-Atmosphere Model’, Clim. Dyn. 8, 55-69.

    Google Scholar 

  • Curry, J. A., Schramm, J. L., Ebert, E. E.: 1995, ‘Sea-Ice Albedo Climate Feedback Mechanism’, J. Clim. 8, 240-247.

    Google Scholar 

  • DeHaan, B. J., Jonas, M., Klepper, O., Krabec, J., Krol, M. S., and Olendrzynski, K.: 1994, ‘An Atmosphere-Ocean Model for Integrated Assessment of Global Change’, Water, Air, and Soil Poll. 76, 283-318.

    Google Scholar 

  • Del Genio, A. D. and Yao, M. S.: 1988, ‘Sensitivity of a Global Climate Model to the Specification of Convective Updraft and Downdraft Mass Fluxes’, J. Atmos. Sci. 45, 2641-2668.

    Google Scholar 

  • Dickinson, R. E.: 1986, ‘How Will Climate Change: The Climate System and Modelling of Future Climate’, in Bolin, B., Doos, B. R., Jager, J., and Warrick, R. A. (eds.), The Greenhouse Effect, Climatic Change, and Ecosystems, John Wiley and Sons, New York, pp. 207-270.

    Google Scholar 

  • Dickinson, R. E. and Cicerone, R. J.: 1986, ‘Future Global Warming from Atmospheric Trace Gases’, Nature 319, 109-115.

    Google Scholar 

  • Dickinson, R. E., Meehl, G. A., and Washington, W. M.: 1987, ‘Ice-Albedo Feedback in a CO2-Doubling Simulation’, Clim. Change 10, 241-248.

    Google Scholar 

  • Gates, W. L.: 1992, ‘AMIP: The Atmospheric Model Intercomparison Project’, Bull. Am. Met. Soc. 73, 1962-1970.

    Google Scholar 

  • Gates, W. L., Cook, K. H., and Schlesinger, M. E.: 1981, ‘Preliminary Analysis of Experiments on the Climatic Effects of Increased CO2 with an Atmospheric General Circulation Model and a Climatological Ocean’, J. Geophys. Res. 86, 6385-6393.

    Google Scholar 

  • Gilliland, R. L.: 1982, ‘Solar, Volcanic, and CO2 Forcing of Recent Climatic Changes’, Clim. Change 4, 111-131.

    Google Scholar 

  • Gilliland, R. L. and Schneider, S. H.: 1984, ‘Volcanic, CO2 and Solar Forcing of Northern and Southern Hemisphere Surface Air Temperatures’, Nature 310, 38-41.

    Google Scholar 

  • Gordon, H. B. and Hunt, B. G.: 1994, ‘Climatic Variability within an Equilibrium Greenhouse Simulation’, Clim. Dyn. 9, 195-212.

    Google Scholar 

  • Gribbin, J.: 1981, Carbon Dioxide, the Climate, and Man, Earthscan Publications, London, p. 64.

    Google Scholar 

  • Hall, M. C. G., Cacuci, D. G., and Schlesinger, M. E.: 1982, ‘Sensitivity Analysis of a Radiative-Convective Model by the Adjoint Method’, J. Atmos. Sci. 39, 2038-2050.

    Google Scholar 

  • Hansen, J., Johnson, D., Lacis, A., Lebedeff, S., Lee, P., Rind, D., and Russell, G.: 1981, ‘Climate Impact of Increasing Atmospheric Carbon Dioxide’, Science 213, 957-966.

    Google Scholar 

  • Hansen, J., Lacis, A., Rind, D., Russell, G., Stone, P., Fung, I., Ruedy, R., and Lerner, J.: 1984, ‘Climate Sensitivity: Analysis of Feedback Mechanisms’, in Hansen, J. E. and Takahashi, T. (eds.), Climate Processes and Climate Sensitivity, Geophys. Monogr. Ser., No. 29, Maurice Ewing vol. 5, American Geophysical Union, Washington D.C., pp. 130-163.

    Google Scholar 

  • Hansen, J., Lacis, A., Ruedy, R., and Sato, Mki: 1992, ‘Potential Climate Impact of Mount Pinatubo Eruption’, Geophys. Res. Lett. 19, 215-218.

    Google Scholar 

  • Hansen, J., Lacis, A., Ruedy, R., Sato, M., Wilson, H.: 1993, ‘How Sensitive Is the World's Climate?’, Research and Exploration 9(2), 142-158.

    Google Scholar 

  • Harvey, L. D. D.: 1986, ‘Effect of Ocean Mixing on the Transient Climate Response to a CO2 Increase: Analysis of Recent Model Results’, J. Geophys. Res. 91, 2709-2718.

    Google Scholar 

  • Hummel, J. R.: 1982, ‘Surface-Temperature Sensitivities in a Multiple Cloud Radiative-Convective Model with a Constant and Pressure Dependent Critical Lapse-Rate’, Tellus 34, 203-208.

    Google Scholar 

  • Hummel, J. R. and Reck, R. A.: 1981, ‘Carbon Dioxide and Climate: The Effects of Water Transport in Radiative-Convective Models’, J. Geophys. Res. 86, 12,035-12,038.

    Google Scholar 

  • Hunt, B. G.: 1981, ‘An Examination of Some Feedback Mechanisms in the Carbon Dioxide Climate Problem’, Tellus 33, 78-88.

    Google Scholar 

  • Idso, S. B.: 1980, ‘The Climatological Significance of a Doubling of Earth's Atmospheric Carbon Dioxide Concentration’, Science 207, 1462-63.

    Google Scholar 

  • Idso, S. B.: 1987, ‘A Clarification of My Position on the CO2/Climate Connection’, Clim. Change 10, 81-86.

    Google Scholar 

  • IPCC [Intergovernmental Panel on Climate Change]: 1990, in Houghton, J. T., Jenkins, G. J., and Ephraums, J. J. (eds.), Climate Change, The IPCC Scientific Assessment, World Meteorological Organization, Cambridge University Press, Cambridge, UK, 365 pp.

    Google Scholar 

  • Jentsch, V.: 1991, ‘An Energy Balance Climate Model with Hydrological Cycle 2. Stability and Sensitivity to External Forcing’, J. Geophys. Res. 96, 17,181-17,193.

    Google Scholar 

  • Jones, P. D., Wigley, T. M. L., and Raper, S. C. B.: 1987, ‘The Rapidity of CO2-Induced Climate Change: Observations, Model Results and Paleoclimatic Implications’, in Berger, W. H. and Labeyrie, L. D. (eds.), Abrupt Climate Change, D. Reidel Pub. Co., Dordrecht.

    Google Scholar 

  • Kandel, R. S.: 1981, ‘Surface Temperature Sensitivity to Increased Atmospheric CO2’, Nature 293, 634-636.

    Google Scholar 

  • Kellogg, W. W.: 1993, ‘An Apparent Moratorium on the Greenhouse Warming due to the Deep Ocean’, Clim. Change 25, 85-88.

    Google Scholar 

  • Lacis, A., Hansen, J., Lee, P., Mitchell, T., and Lebedeff, S.: 1981, ‘Greenhouse Effect of Trace Gases, 1970–1980’, Geophys. Res. Lett. 8, 1035-1038.

    Google Scholar 

  • Lal, M. and Ramanathan, V.: 1984, ‘The Effects of Moist Convection and Water-Vapor Radiative Processes on Climate Sensitivity’, J. Atmos. Sci. 41, 2238-2249.

    Google Scholar 

  • LeTreut, H., Li, Z. X., Forichon, M.: 1994, ‘Sensitivity of the LMD General Circulation Model to Greenhouse Forcing Associated with Two Different Cloud Water Parameterizations’, J. Clim. 7, 1827-1841.

    Google Scholar 

  • Lindzen, R. S., Hou, A. Y., Farrell, B. F.: 1982, ‘The Role of Convective Model Choice in Calculating the Climate Impact of Doubling CO2’, J. Atmos. Sci. 39, 1189-1205.

    Google Scholar 

  • Liou, K. N., Lu, P. J., and Ou, S. C. S.: 1985, ‘Interactive Cloud Formation and Climatic Temperature Perturbations’, J. Atmos. Sci. 42, 1969-1981.

    Google Scholar 

  • MacCracken, M. C. and Luther, F. M. (eds.): 1985, Projecting the Climatic Effects of Increasing Carbon Dioxide, Office of Energy Research, Office of Basic Energy Sciences, Carbon Dioxide Research Division, U.S. Department of Energy Report No. DOE/ER-0237, Washington D.C., pp. 87-97.

  • Mahfouf, J. F., Cariolle, D., Royer, J. F., Geleyn, J. F., and Timbal, B.: 1994, ‘Response of the Mateo-France Climate Model to Changes in CO2 and Sea-Surface Temperature’, Clim. Dyn. 9, 345-362.

    Google Scholar 

  • Manabe, S. and Stouffer, R. J.: 1980, ‘Sensitivity of a Global Climate Model to an Increase of CO2 Concentration in the Atmosphere’, J. Geophys. Res. 85, 5529-5554.

    Google Scholar 

  • Manabe, S. and Stouffer, R. J.: 1993, ‘Century-Scale Effects of Increased Atmospheric CO2 on the Ocean-Atmosphere System’, Nature 364, 215-218.

    Google Scholar 

  • Manabe, S. and Wetherald, R. T.: 1980, ‘On the Distribution of Climate Change Resulting from an Increase in CO2-Content of the Atmosphere’, J. Atmos. Sci. 37, 99-118.

    Google Scholar 

  • McBean, G. A.: 1994, ‘Global Change Models -- A Physical Perspective’, Ambio 23, 13-18.

    Google Scholar 

  • McElroy, M. B.: 1994, ‘Climate of the Earth: An Overview’, Environm. Pollu. 83, 3-21.

    Google Scholar 

  • Meehl, G. A., Washington, W. M., and Karl, T. R.: 1993, ‘Low-Frequency Variability and CO2 Transient Climate Change 1. Time-Averaged Differences’, Clim. Dyn. 8, 117-133.

    Google Scholar 

  • Mendelsohn, R. and Rosenberg, N. J.: 1994, ‘Framework for Integrated Assessments of Global Warming Impacts’, Clim. Change 28, 15-44.

    Google Scholar 

  • Mitchell, J. F. B.: 1983, ‘The Seasonal Response of a General-Circulation Model to Changes in CO2 and Sea Temperatures’, Quar. J. Royal Met. Soc. 109, 113-152.

    Google Scholar 

  • Mitchell, J. F. B. and Ingram, W. J.: 1992, ‘Carbon Dioxide and Climate: Mechanisms of Changes in Cloud’, J. Clim. 5, 5-21.

    Google Scholar 

  • Mitchell, J. F. B., Senior, C. A., and Ingram, W. J.: 1989, ‘CO2 and Climate: A Missing Feedback?’, Nature 341, 132-134.

    Google Scholar 

  • Mitchell, J. F. B. and Warrilow, D. A.: 1987, ‘Summer Dryness in Northern Mid-Latitude due to Increased CO2’, Nature 330, 238-240.

    Google Scholar 

  • Morgan, M. G. and Keith, D. W.: 1995, ‘Subjective Judgments by Climate Experts’, Env. Sci. & Tech. 29, 468A-476A.

    Google Scholar 

  • National Research Council: 1979, Carbon Dioxide and Climate: A Scientific Assessment, National Academy of Sciences Press, Washington, D.C., p. 22.

    Google Scholar 

  • National Research Council: 1982, Carbon Dioxide and Climate: A Second Assessment, National Academy of Sciences Press, Washington, D.C., p. 72.

    Google Scholar 

  • Noda, A. and Tokioka, T.: 1989, ‘The Effect of Doubling CO2 Concentration on Convective and Non-Convective Precipitation in a General Circulation Model Coupled with a Simple Mixed Layer Ocean’, J. Met. Soc. Japan 67, 95-110.

    Google Scholar 

  • Ou, S. C. S. and Liou, K. N.: 1985, ‘Cumulus Convection and Climatic Temperature Perturbations’, J. Geophys. Res. 90, 2223-2232.

    Google Scholar 

  • Owens, A. J., Hales, C. H., Filkin, D. L., Miller, C., Steed, J. M., and Jesson, J. P.: 1985, ‘A Coupled One-Dimensional Radiative-Convective, Chemistry-Transport Model of the Atmosphere 1. Model Structure and Steady State Perturbation Calculations’, J. Geophys. Res. 90, 2283-2311.

    Google Scholar 

  • Pan, Z. Segal, M., Turner, R., and Takle, E.: 1995, ‘Model Simulation of Impacts of Transient Surface Wetness on Summer Rainfall in the US Midwest during Drought and Flood Years’, Mon. Wea. Rev. 123, 1575-1581.

    Google Scholar 

  • Peng, L., Chou, M. D., and Arking, A.: 1987, ‘Climate Warming due to Increasing Atmospheric CO2: Simulations with a Multilayer Coupled Atmosphere-Ocean Seasonal Energy Balance Model’, J. Geophys. Res. 92, 5505-5521.

    Google Scholar 

  • Pollard, D. and Thompson, S. L.: 1994, ‘Sea-Ice Dynamics and CO2 Sensitivity in a Global Climate Model’, Atmos.-Ocean 32, 449-467.

    Google Scholar 

  • Potter, G. L.: 1980, ‘Zonal Calculation of the Climatic Effect of Increased CO2’, in Singh, J. J. and Deepak, A. (eds.), Environmental and Climatic Impact of Coal Utilization, Academic Press, New York, pp. 433-454.

    Google Scholar 

  • Ramanathan, V.: 1981, ‘The Role of Ocean-Atmosphere Interactions in the CO2 Climate Problem’, J. Atmos. Sci. 38, 918-930.

    Google Scholar 

  • Ramanathan, V.: 1988, ‘The Greenhouse Theory of Climate Change: A Test by an Inadvertent Global Experiment’, Science 240, 293-299.

    Google Scholar 

  • Ramanathan, V., Callis, L., Cess, R., Hansen, J., Isaksen, I., Kuhn, W., Lacis, A., Luther, F., Mahlman, J., Reck, R., and Schlesinger, M.: 1987, ‘Climate-Chemical Interactions and Effects of Changing Atmospheric Trace Gases’, Rev. Geophys. 25, 1441-1482.

    Google Scholar 

  • Reck, R. A.: 1981, Introduction to the Proceedings of the Workshop on the Responsible Interpretation of Atmospheric Models and Related Data, General Motors Research Publication GMR-3800, Warren, Michigan, p. 22.

  • Reck, R. A.: 1992a, ‘Changing Cloud Abundance’, in Policy Implications of Greenhouse Warming, Panel on Policy Implications of Greenhouse Warming, Committee on Science, Engineering, and Public Policy, National Academy Press, Washington D.C., pp. 824-835.

    Google Scholar 

  • Reck, R. A.: 1992b, Overview of Global Greenhouse Effects, Global Climate Change Program, Office of Energy Research, Office of Health and Environmental Research, U.S. Department of Energy (W-31-109-Eng-38), Washington, D.C., p. 15.

    Google Scholar 

  • Riches, M. R. and Koomanoff, F. A.: 1985, ‘Overview of the Department of Energy Carbon Dioxide Research Program’, Bull. Am. Met. Soc. 66, 152-158.

    Google Scholar 

  • Rind, D., Chiou, E. W., Chu, W., Larsen, J., Oltmans, S., Lerner, J., McCormick, M. P., and McMaster, L.: 1991, ‘Positive Water Vapor Feedback in Climate Models Confirmed by Satellite Data’, Nature 349, 500-503.

    Google Scholar 

  • Rind, D., Healy, R., Parkinson, C., Martinson, D.: 1995, ‘The Role of Sea Ice in 2 × CO2 Climate Model Sensitivity, Part I: The Total Influence of Sea Ice Thickness and Extent’, J. Clim. 8, 449-463.

    Google Scholar 

  • Roeckner, E., Schlese, U., Biercamp, J., and Loewe, P.: 1987, ‘Cloud Optical Depth Feedbacks and Climate Modelling’, Nature 329, 138-140.

    Google Scholar 

  • Schlesinger, M. E.: 1982, ‘Simulating CO2-Induced Climatic Change with Mathematical Climate Models: Capabilities, Limitations, and Prospects’, in Proceedings: Carbon Dioxide Research Conference: Carbon Dioxide, Science, and Consensus (CONF-820970), U.S. Department of Energy, Washington D.C., pp. III.3-131.

    Google Scholar 

  • Schlesinger, M. E.: 1983, ‘A Review of Climate Models and their Simulation of CO2-Induced Warming’, Intern. J. Environm. Studies 20, 103-114.

    Google Scholar 

  • Schlesinger, M. E. (ed.): 1991, Greenhouse-Gas-Induced Climatic Change: A Critical Appraisal of Simulations and Observations, Elsevier Science Publishers, Amsterdam, p. 615.

    Google Scholar 

  • Schlesinger, M. E., Oh, J. H., Jiang, X., Zhao, Z. C., and Vickers, D.: 1988, Research on CO 2 -Induced Climate Change, Final report on NSF grant AT 3511889, U.S. Department of Energy Report No. DOE/EV/10053-T1, Washington D.C., p. 53.

  • Schlesinger, M. E. and Ramankutty, N.: 1992, ‘Implications for Global Warming of Intercycle Solar Irradiance Variations’, Nature 360, 330-333.

    Google Scholar 

  • Schlesinger, M. E. and Zhao, Z. C.: 1989, ‘Seasonal Climatic Changes Induced by Doubled CO2 as Simulated by the OSU Atmospheric GCM/Mixed-Layer Ocean Model’, J. Clim. 2, 459-495.

    Google Scholar 

  • Schmitt, C. and Randall, D. A.: 1991, ‘Effects of Surface Temperature and Clouds on the CO2 Forcing’, J. Geophys. Res. 96, 9159-9168.

    Google Scholar 

  • Schneider, S. H.: 1989, ‘The Greenhouse Effect: Science and Policy’, Science 243, 771-782.

    Google Scholar 

  • Seidel, S. and Keyes, D.: 1983, Can We Delay a Greenhouse Warming?, Strategic Studies Staff, Office of Policy Analysis, Office of Policy and Resources Management, U.S. Environmental Protection Agency, Washington D.C., p. 182.

    Google Scholar 

  • Senior, C. A. and Mitchell, J. F. B.: 1993, ‘Carbon Dioxide and Climate: The Impact of Cloud Parameterization’, J. Clim. 6, 393-418.

    Google Scholar 

  • Somerville, R. C. J. and Remer, L. A.: 1984, ‘Cloud Optical Thickness Feedbacks in the CO2 Climate Problem’, J. Geophys. Res. 89, 9668-9672.

    Google Scholar 

  • Stenchikov, G. L.: 1991, ‘Computer Experiments with a Coarse-Grid Hydrodynamic Climate Model’, in Schlesinger, M. E. (ed.), Greenhouse-Gas-Induced Climatic Change: A Critical Appraisal of Simulations and Observations, Elsevier Science Publishers, Amsterdam, pp. 63-68.

    Google Scholar 

  • Stokes, G. M. and Schwartz, S. E.: 1994, ‘The Atmospheric Radiation Measurement (ARM) Program: Programmatic Background and Design of the Cloud and Radiation Test Bed’, Bull. Am. Met. Soc. 75, 1201-1221.

    Google Scholar 

  • Stouffer, R. J., Manabe, S., and Bryan, K.: 1989, ‘Interhemispheric Asymmetry in Climate Response to a Gradual Increase in CO2’, Nature 342, 660-662.

    Google Scholar 

  • Subcommittee on Global Change Research (SGCR) of the Committee on Environment and Natural Resources Research (CENR): 1995, Our Changing Planet: The FY 1995 U.S. Global Change Research Program, National Science and Technology Council, p. 132.

  • Sulzman, E. W., Poiani, K. A., and Kittel, T. G. F.: 1995, ‘Modeling Human-Induced Climatic Change: A Summary for Environmental Managers’, Environm. Managem. 19, 197-224.

    Google Scholar 

  • Tomkin, J.: 1993, ‘CO2's Greenhouse Contribution Debated-Tomkin's Replies’, Phys. Today 46, 68.

    Google Scholar 

  • Vardavas, I. M. and Carver, J. H.: 1985, ‘Atmospheric Temperature Response to Variations in CO2 Concentrations and the Solar Constant’, Planet. Space Sci. 33, 1187-1207.

    Google Scholar 

  • Wang, H. J., Zeng, Q. C., and Zhang, X. H.: 1993, ‘The Numerical-Simulation of the Climatic-Change Caused by CO2 Doubling’, Sci. China Ser. B-Chem. Life Sci. & Earth Sci. 36, 451-462.

    Google Scholar 

  • Wang, W.-C., Dudek, M. P., Liang, X. Z., and Kiehl, J. T.: 1991, ‘Inadequacy of Effective CO2 as a Proxy in Simulating the Greenhouse Effect of Other Radiatively Active Gases’, Nature 350, 573-577.

    Google Scholar 

  • Wang, W.-C., Rossow, W. B., Yao, M. S., and Wolfson, M.: 1981, ‘Climate Sensitivity of a One-Dimensional Radiative-Convective Model with Cloud Feedback’, J. Atmos. Sci. 38, 1167-1178.

    Google Scholar 

  • Wang, W.-C. and Stone, P. H.: 1980, ‘Effect of Ice-albedo Feedback on Global Sensitivity in a One-Dimensional Radiative-Convective Climate Model’, J. Atmos. Sci. 37, 545-552.

    Google Scholar 

  • Washington, W. M. and Meehl, G. A.: 1983, ‘General Circulation Model Experiments on the Climatic Effects due to a Doubling and Quadrupling of Carbon Dioxide Concentration’, J. Geophys. Res. 88, 6600-6610.

    Google Scholar 

  • Washington, W. M. and Meehl, G. A.: 1984, ‘Seasonal Cycle Experiment on the Climate Sensitivity due to a Doubling of CO2 with an Atmospheric General Circulation Model Coupled to a Simple Mixed Layer Ocean Model’, J. Geophys. Res. 89, 9475-9503.

    Google Scholar 

  • Washington, W. M. and Meehl, G. A.: 1986, ‘General Circulation Model CO2 Sensitivity Experiments: Snow-Sea Ice Albedo Parameterizations and Globally Averaged Surface Air Temperature’, Clim. Change 8, 231-241.

    Google Scholar 

  • Washington, W. M. and Meehl, G. A.: 1989, ‘Climate Sensitivity due to Increased CO2: Experiments with a Coupled Atmosphere and Ocean General Circulation Model’, Clim. Dyn. 4, 1-38.

    Google Scholar 

  • Washington, W. M. and Meehl, G. A.: 1991, ‘Characteristics of Coupled Atmosphere-Ocean CO2 Sensitivity Experiments with Different Ocean Formulations’, in Schlesinger, M. E. (ed.), Greenhouse-Gas-Induced Climatic Change: A Critical Appraisal of Simulations and Observations, Elsevier Science Publishers, Amsterdam, pp. 79-110.

    Google Scholar 

  • Watts, R. G. and Morantine, M. C.: 1993, ‘Is the Greenhouse Gas-Climate Signal Hiding in the Deep Ocean?’, Clim. Change 18, iii-vi.

    Google Scholar 

  • Weller, G.: 1995, ‘Global Pollution and its Effect on the Climate of the Arctic’, Sci. Tot. Env. 160, 19-24.

    Google Scholar 

  • Wetherald, R. T. and Manabe, S.: 1981, ‘Influence of Seasonal Variation upon the Sensitivity of a Model Climate’, J. Geophys. Res. 86, 1194-1204.

    Google Scholar 

  • Wetherald, R. T. and Manabe, S.: 1988, ‘Cloud Feedback Processes in a General Circulation Model’, J. Atmos. Sci. 45, 1397-1415.

    Google Scholar 

  • Wielicki, B. A., Cess, R. D., King, M. D., Randall, D. A., and Harrison, E. F.: 1995, ‘Mission to Planet Earth: Role of Clouds and Radiation in Climate’, Bull. Am. Met. Soc. 76, 2125-2153.

    Google Scholar 

  • Wigley, T. M. L. and Raper, S. C. B.: 1987, ‘Thermal Expansion of Sea Water Associated with Global Warming’, Nature 330, 127-131.

    Google Scholar 

  • Wigley, T. M. L. and Raper, S. C. B.: 1992, ‘Implications for Climate and Sea Level of Revised IPCC Emissions Scenarios’, Nature 357, 293-300.

    Google Scholar 

  • Wilson, C. A. and Mitchell, J. F. B.: 1987, ‘A 2 × CO2 Climate Sensitivity Experiment with a Global Climate Model including a Simple Ocean’, J. Geophys. Res. 92, 13,315-13,343.

    Google Scholar 

  • Zurer, P.: 1995, ‘NASA Cultivating Basic Technology for Supersonic Passenger Aircraft’, C & E News 24, 10.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kacholia, K., Reck, R.A. COMPARISON OF GLOBAL CLIMATE CHANGE SIMULATIONS FOR 2 × CO2-INDUCED WARMING. Climatic Change 35, 53–69 (1997). https://doi.org/10.1023/A:1005372618899

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005372618899

Keywords

Navigation